Redox modulation of Rubisco conformation and activity through its cysteine residues

被引:65
作者
Moreno, Joaquin [1 ]
Jesus Garcia-Murria, Maria [1 ]
Marin-Navarro, Julia [1 ]
机构
[1] Univ Valencia, Fac Biol, Dept Biochem & Mol Biol, E-46100 Burjassot, Spain
关键词
D O I
10.1093/jxb/erm310
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Treatment of purified Rubisco with agents that specifically oxidize cysteine-thiol groups causes catalytic inactivation and increased proteolytic sensitivity of the enzyme. It has been suggested that these redox properties may sustain a mechanism of regulating Rubisco activity and turnover during senescence or stress. Current research efforts are addressing the structural basis of the redox modulation of Rubisco and the identification of critical cysteines. Redox shifts result in Rubisco conformational changes as revealed by the alteration of its proteolytic fragmentation pattern upon oxidation. In particular, the augmented susceptibility of Rubisco to proteases is due to increased exposure of a small loop (between Ser61 and Thr68) when oxidized. Progressive oxidation of Rubisco cysteines using disulphide/thiol mixtures at different ratios have shown that inactivation occurs under milder oxidative conditions than proteolytic sensitization, suggesting the involvement of different critical cysteines. Site-directed mutagenesis of conserved cysteines in the Chlamydomonas reinhardtii Rubisco identified Cys449 and Cys459 among those involved in oxidative inactivation, and Cys172 and Cys192 as the specific target for arsenite. The physiological importance of Rubisco redox regulation is supported by the in vivo response of the cysteine mutants to stress conditions. Substitution of Cys172 caused a pronounced delay in stress-induced Rubisco degradation, while the replacement of the functionally redundant Cys449-Cys459 pair resulted in an enhanced catabolism with a faster high-molecular weight polymerization and translocation to membranes. These results suggest that several cysteines contribute to a sequence of conformational changes that trigger the different stages of Rubisco catabolism under increasing oxidative conditions.
引用
收藏
页码:1605 / 1614
页数:10
相关论文
共 51 条
[1]   The catabolism of ribulose bisphosphate carboxylase from higher plants.: A hypothesis [J].
Albuquerque, JA ;
Esquível, MG ;
Teixeira, AR ;
Ferreira, RB .
PLANT SCIENCE, 2001, 161 (01) :55-65
[2]   Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].
Alscher, RG ;
Erturk, N ;
Heath, LS .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1331-1341
[3]   CRYSTAL-STRUCTURE OF THE ACTIVE-SITE OF RIBULOSE-BISPHOSPHATE CARBOXYLASE [J].
ANDERSSON, I ;
KNIGHT, S ;
SCHNEIDER, G ;
LINDQVIST, Y ;
LUNDQVIST, T ;
BRANDEN, CI ;
LORIMER, GH .
NATURE, 1989, 337 (6204) :229-234
[4]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[5]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[6]   Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis [J].
Davison, PA ;
Hunter, CN ;
Horton, P .
NATURE, 2002, 418 (6894) :203-206
[7]   Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley [J].
Desimone, M ;
Henke, A ;
Wagner, E .
PLANT PHYSIOLOGY, 1996, 111 (03) :789-796
[8]   The function of peroxiredoxins in plant organelle redox metabolism [J].
Dietz, Karl-Josef ;
Jacob, Simone ;
Oelze, Marie-Luise ;
Laxa, Miriam ;
Tognetti, Vanesa ;
Nunes de Miranda, Susana Marina ;
Baier, Margarete ;
Finkemeier, Iris .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (08) :1697-1709
[9]  
ECKARDT NA, 1995, PLANT PHYSIOL BIOCH, V33, P273
[10]  
Evans JR., 1989, PHOTOSYNTHESIS, P183