A Semi-Supervised Few-Shot Learning Model for Epileptic Seizure Detection

被引:1
|
作者
Zhang, Zheng [1 ]
Li, Xin [1 ]
Geng, Fengji [2 ]
Huang, Kejie [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, 38 Zheda Rd, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Coll Educ, Hangzhou, Peoples R China
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
epileptic seizure detection; semi-supervised learning; EEG; machine learning; double predictions;
D O I
10.1109/EMBC46164.2021.9630363
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the past decade, the rapid development of machine learning has dramatically improved the performance of epileptic detection with Electroencephalography (EEG). However, only a small amount of labeled epileptic data is available for training because labeling requires numerous neurologists. This paper proposes a one-step semi-supervised epilepsy detection system to reduce the labeling cost by fully utilizing the unlabeled data. The proposed neural network training strategy enables a more robust and accurate decision boundary by forcing the consistency of the double predictions on the same unlabeled data. The results show that the Area Under Receiver Operating Characteristic (AUROC) curves of our proposed model are 103% and 4.9% higher than the supervised methods on CHB-MIT and Kaggle datasets, respectively.
引用
收藏
页码:600 / 603
页数:4
相关论文
共 50 条
  • [1] Few-shot Object Detection as a Semi-supervised Learning Problem
    Bailer, Werner
    Fassold, Hannes
    19TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2022, 2022, : 131 - 135
  • [2] HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning
    Zhmoginov, Andrey
    Sandler, Mark
    Vladymyrov, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [3] Task Cooperation for Semi-Supervised Few-Shot Learning
    Ye, Han-Jia
    Li, Xin-Chun
    Zhan, De-Chuan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10682 - 10690
  • [4] A Few-Shot Learning Model Based on Semi-Supervised with Pseudo Label
    Yu Y.
    Feng L.
    Wang G.-G.
    Xu Q.-F.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (11): : 2284 - 2291
  • [5] An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning
    Wei, Xiu-Shen
    Xu, He-Yang
    Zhang, Faen
    Peng, Yuxin
    Zhou, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] A Contrastive Model with Local Factor Clustering for Semi-Supervised Few-Shot Learning
    Lin, Hexiu
    Liu, Yukun
    Shi, Daming
    Cheng, Xiaochun
    MATHEMATICS, 2023, 11 (15)
  • [7] SEMI-SUPERVISED FEW-SHOT CLASS-INCREMENTAL LEARNING
    Cui, Yawen
    Xiong, Wuti
    Tavakolian, Mohammad
    Liu, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1239 - 1243
  • [8] Semi-Supervised Few-Shot Learning with Prototypical Random Walks
    Ayyad, Ahmed
    Li, Yuchen
    Muaz, Raden
    Albarqouni, Shadi
    Elhoseiny, Mohamed
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 45 - 57
  • [9] Semi-supervised Few-shot Network Intrusion Detection based on Meta-learning
    Liu, Yao
    Zhou, Le
    Liu, Qiao
    Lan, Tian
    Bai, Xiaoyu
    Zhou, Tinghao
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 495 - 502
  • [10] Ensemble Transductive Propagation Network for Semi-Supervised Few-Shot Learning
    Pan, Xueling
    Li, Guohe
    Zheng, Yifeng
    ENTROPY, 2024, 26 (02)