A Brief Review on the Chemical Stability and Corrosivity of Magnetocaloric Materials

被引:8
作者
Wojcieszak, Sydney [1 ]
Wodajo, Binyam [2 ]
Duong, Anthony [2 ]
Hadimani, Ravi L. [2 ,3 ]
Barua, Radhika [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, 401 W Broad St, Richmond, VA 23284 USA
[3] Virginia Commonwealth Univ, Dept Biomed Engn, Richmond, VA 23284 USA
关键词
MICROSTRUCTURE; BEHAVIOR; WORKING; ALLOYS; CO;
D O I
10.1007/s11837-022-05495-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Active magnetic regenerative refrigeration is an energy-efficient and environmentally friendly alternative to conventional vapor-compression refrigeration technology, which is associated with harmful chemical refrigerants and high carbon emissions having high ozone-depleting potential. The core component of AMR is a porous magnetocaloric material that undergoes millions of thermal and magnetic field cycles throughout the device's lifetime, while immersed in a heat transfer fluid. Despite significant research spanning almost four decades, the chemical stability of MCMs continues to pose a critical engineering challenge. In this mini-review, research on the corrosion of room-temperature MCMs is discussed. Particular attention is given to Gd, Gd5Si2Ge2, and La(Fe,Si)(13) and their compositional variants. Following a brief overview of the wide variety of corrosion monitoring methods used to evaluate magnetocaloric regenerator structures, corrosion inhibition mechanisms are discussed in the context of metallurgical, processing, and environmental factors. Finally, challenges associated with corrosion testing of magnetocaloric structures fabricated via additive manufacturing methods are presented.
引用
收藏
页码:4368 / 4378
页数:11
相关论文
共 53 条
[31]   Experimental characterization of active magnetic regenerators constructed using laser beam melting technique [J].
Navickaite, Kristina ;
Liang, Jierong ;
Bahl, Christian ;
Wieland, Sandra ;
Buchenau, Theresa ;
Engelbrecht, Kurt .
APPLIED THERMAL ENGINEERING, 2020, 174
[32]   Additive manufacturing - a general corrosion perspective [J].
Ornek, Cem .
CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2018, 53 (07) :531-535
[33]   Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu [J].
Pauly, Simon ;
Wang, Pei ;
Kuehn, Uta ;
Kosiba, Konrad .
ADDITIVE MANUFACTURING, 2018, 22 :753-757
[34]   Magnetocaloric effect and magnetic refrigeration [J].
Pecharsky, VK ;
Gschneidner, KA .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) :44-56
[35]   Giant magnetocaloric effect in Gd-5(Si2Ge2) [J].
Pecharsky, VK ;
Gschneidner, KA .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4494-4497
[36]  
Saji V.S., 2010, RECENT PATENTS CORRO
[37]  
Schierle-Arndt K., Patent No. [9,887,027, 9887027]
[38]   Room-temperature polymer-assisted additive manufacturing of microchanneled magnetocaloric structures [J].
Sharma, Vaibhav ;
Balderson, Lilly ;
Heo, Rachel ;
Bishop, Omar ;
Hunt, Caitlin S. M. ;
Carpenter, Everett E. ;
Hadimani, Ravi L. ;
Zhao, Hong ;
Barua, Radhika .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 920
[39]  
Stevens E., 2021, THESIS U PITTSBURGH
[40]   Electroless plating Ni-P coatings on La(Fe, Si)13 hydride bulks for room-temperature magnetic-refrigeration application [J].
Sun, Naikun ;
Zhao, Xinguo ;
Song, Yingwei ;
Liu, Runqing ;
Guo, Jie ;
Zhang, Yang ;
Huang, Jiaohong ;
Zhang, Zhidong .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 525