A Brief Review on the Chemical Stability and Corrosivity of Magnetocaloric Materials

被引:8
作者
Wojcieszak, Sydney [1 ]
Wodajo, Binyam [2 ]
Duong, Anthony [2 ]
Hadimani, Ravi L. [2 ,3 ]
Barua, Radhika [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, 401 W Broad St, Richmond, VA 23284 USA
[3] Virginia Commonwealth Univ, Dept Biomed Engn, Richmond, VA 23284 USA
关键词
MICROSTRUCTURE; BEHAVIOR; WORKING; ALLOYS; CO;
D O I
10.1007/s11837-022-05495-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Active magnetic regenerative refrigeration is an energy-efficient and environmentally friendly alternative to conventional vapor-compression refrigeration technology, which is associated with harmful chemical refrigerants and high carbon emissions having high ozone-depleting potential. The core component of AMR is a porous magnetocaloric material that undergoes millions of thermal and magnetic field cycles throughout the device's lifetime, while immersed in a heat transfer fluid. Despite significant research spanning almost four decades, the chemical stability of MCMs continues to pose a critical engineering challenge. In this mini-review, research on the corrosion of room-temperature MCMs is discussed. Particular attention is given to Gd, Gd5Si2Ge2, and La(Fe,Si)(13) and their compositional variants. Following a brief overview of the wide variety of corrosion monitoring methods used to evaluate magnetocaloric regenerator structures, corrosion inhibition mechanisms are discussed in the context of metallurgical, processing, and environmental factors. Finally, challenges associated with corrosion testing of magnetocaloric structures fabricated via additive manufacturing methods are presented.
引用
收藏
页码:4368 / 4378
页数:11
相关论文
共 53 条
[21]   Stability of magnetocaloric La(FexCoySi1-x-y)13 in water and air [J].
Javed, Khushar ;
Gupta, Shalabh ;
Pecharsky, Vitalij K. ;
Hadimani, Ravi L. .
AIP ADVANCES, 2019, 9 (03)
[22]  
Kimes K, 2018, BINDER JET ADDITIVE, P33
[23]  
Kitanovski A., 2015, Green Energy and Technology
[24]   Electrochemical Comparative Characteristics of La(Fe,Si)13 Type Materials with Different Content of Co in Acidified Phosphate Environment in Presence of Cl- Ions [J].
Klimecka-Tatar, Dorota ;
Pawlowska, Grazyna ;
Radomska, Klaudia ;
Gebara, Piotr .
MATERIALS SCIENCE-MEDZIAGOTYRA, 2019, 25 (03) :265-269
[25]   Widening the scope of policies to address climate change: directions for maninstreamlong [J].
Kok, M. T. J. ;
de Coninck, H. C. .
ENVIRONMENTAL SCIENCE & POLICY, 2007, 10 (7-8) :587-599
[26]   Towards additive manufacturing of magnetocaloric working materials [J].
Lejeune, B. T. ;
Barua, R. ;
Simsek, E. ;
McCallum, R. W. ;
Ott, R. T. ;
Kramer, M. J. ;
Lewis, L. H. .
MATERIALIA, 2021, 16
[27]   LaFeSi-based magnetocaloric material analysis: Cyclic endurance and thermal performance results * [J].
Lionte, Sergiu ;
Barcza, Alexander ;
Risser, Michel ;
Muller, Christian ;
Katter, Matthias .
INTERNATIONAL JOURNAL OF REFRIGERATION, 2021, 124 :43-51
[28]   The Magnetocaloric Effect and Electrochemistry Corrosion of La0.7-xSr0.3EuxMnO3 Manganite [J].
Luo, Xinyao ;
Yang, Hangfu ;
Hua, Sihao ;
Wu, Qiong ;
Yu, Nengjun ;
Yu, Yundan ;
Zhang, Pengyue ;
Ge, Hongliang .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (06) :1-11
[29]   Printing (Mn,Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications [J].
Miao, Xuefei ;
Wang, Wenyao ;
Liang, Huixin ;
Qian, Fengjiao ;
Cong, Mengqi ;
Zhang, Yujing ;
Muhammad, Amir ;
Tian, Zongjun ;
Xu, Feng .
JOURNAL OF MATERIALS SCIENCE, 2020, 55 (15) :6660-6668
[30]   Selective laser melting of La(Fe,Co,Si)13 geometries for magnetic refrigeration [J].
Moore, J. D. ;
Klemm, D. ;
Lindackers, D. ;
Grasemann, S. ;
Traeger, R. ;
Eckert, J. ;
Loeber, L. ;
Scudino, S. ;
Katter, M. ;
Barcza, A. ;
Skokov, K. P. ;
Gutfleisch, O. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (04)