A Brief Review on the Chemical Stability and Corrosivity of Magnetocaloric Materials

被引:8
作者
Wojcieszak, Sydney [1 ]
Wodajo, Binyam [2 ]
Duong, Anthony [2 ]
Hadimani, Ravi L. [2 ,3 ]
Barua, Radhika [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, 401 W Broad St, Richmond, VA 23284 USA
[3] Virginia Commonwealth Univ, Dept Biomed Engn, Richmond, VA 23284 USA
关键词
MICROSTRUCTURE; BEHAVIOR; WORKING; ALLOYS; CO;
D O I
10.1007/s11837-022-05495-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Active magnetic regenerative refrigeration is an energy-efficient and environmentally friendly alternative to conventional vapor-compression refrigeration technology, which is associated with harmful chemical refrigerants and high carbon emissions having high ozone-depleting potential. The core component of AMR is a porous magnetocaloric material that undergoes millions of thermal and magnetic field cycles throughout the device's lifetime, while immersed in a heat transfer fluid. Despite significant research spanning almost four decades, the chemical stability of MCMs continues to pose a critical engineering challenge. In this mini-review, research on the corrosion of room-temperature MCMs is discussed. Particular attention is given to Gd, Gd5Si2Ge2, and La(Fe,Si)(13) and their compositional variants. Following a brief overview of the wide variety of corrosion monitoring methods used to evaluate magnetocaloric regenerator structures, corrosion inhibition mechanisms are discussed in the context of metallurgical, processing, and environmental factors. Finally, challenges associated with corrosion testing of magnetocaloric structures fabricated via additive manufacturing methods are presented.
引用
收藏
页码:4368 / 4378
页数:11
相关论文
共 53 条
[1]   Advanced materials for magnetic cooling: Fundamentals and practical aspects [J].
Balli, M. ;
Jandl, S. ;
Fournier, P. ;
Kedous-Lebouc, A. .
APPLIED PHYSICS REVIEWS, 2017, 4 (02)
[2]   On the role of cooling rate and temperature in forming twinned α′ martensite in Ti-6Al-4V [J].
Cao, Sheng ;
Zhang, Bohua ;
Yang, Yi ;
Jia, Qingbo ;
Li, Lei ;
Xin, Shewei ;
Wu, Xinhua ;
Hu, Qiaodan ;
Lim, Chao Voon Samuel .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 813
[3]   A successful process to prevent corrosion of rich Gd-based room temperature magnetocaloric material during ageing [J].
Chennabasappa, Madhu ;
Lahaye, Michel ;
Chevalier, Bernard ;
Labrugere, Christine ;
Toulemonde, Olivier .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 850 (850)
[4]   A core-shell phenomenon maintain the magnetocaloric properties of the ternary silicide Gd6Co1.67Si3 during water flux ageing [J].
Chennabasappa, Madhu ;
Chevalier, Bernard ;
Lahaye, Michel ;
Labrugere, Christine ;
Toulemonde, Olivier .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 584 :34-40
[5]  
EIA, 2020, ANN ENERGY OUTLOOK 2
[6]   Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators [J].
Engelbrecht, K. ;
Bahl, C. R. H. ;
Nielsen, K. K. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (04) :1132-1140
[7]   Corrosion behavior of gadolinium and La-Fe-Co-Si compounds in various heat conducting fluids [J].
Forchelet, J. ;
Zamni, L. ;
El Alami, S. El Maudni ;
Hu, J. ;
Balli, M. ;
Sari, O. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 37 :307-313
[8]   Magnetocaloric effect: From materials research to refrigeration devices [J].
Franco, V. ;
Blazquez, J. S. ;
Ipus, J. J. ;
Law, J. Y. ;
Moreno-Ramirez, L. M. ;
Conde, A. .
PROGRESS IN MATERIALS SCIENCE, 2018, 93 :112-232
[9]   Metal Additive Manufacturing: A Review [J].
Frazier, William E. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (06) :1917-1928
[10]   Getting magnetocaloric materials into good shape: Cold-working of La(Fe, Co, Si)13 by powder-in-tube-processing [J].
Funk, Alexander ;
Freudenberger, Jens ;
Waske, Anja ;
Krautz, Maria .
MATERIALS TODAY ENERGY, 2018, 9 :223-228