Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey

被引:112
|
作者
Wang, Zhen-guo [1 ]
Sun, Xi-wan [1 ]
Huang, Wei [1 ]
Li, Shi-bin [1 ]
Yan, Li [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Drag and heat reduction; Forward-facing cavity; Opposing jet; Aerospike; Energy deposition; Supersonic/hypersonic flows; MULTIOBJECTIVE DESIGN OPTIMIZATION; COMBINATIONAL OPPOSING JET; THERMAL PROTECTION SYSTEM; FORWARD-FACING CAVITY; HIGH-SPEED; BLUNT-BODY; COUNTERFLOWING JET; HYPERSONIC FLOW; SUPERSONIC-FLOW; ABLATION ONSET;
D O I
10.1016/j.actaastro.2016.09.004
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The drag and heat reduction problem of hypersonic vehicles has always attracted the attention worldwide, and the experimental test approach is the basis of theoretical analysis and numerical simulation. In the current study, research progress of experimental investigations on drag and heat reduction are summarized by several kinds of mechanism, namely the forward-facing cavity, the opposing jet, the aerospike, the energy deposition and their combinational configurations, and the combinational configurations include the combinational opposing jet and forward-facing cavity concept and the combinational opposing jet and aerospike concept. The geometric models and flow conditions are emphasized, especially for the basic principle for the drag and heat flux reduction of each device. The measurement results of aerodynamic and aerothermodynamic are compared and analyzed as well, which can be a reference for assessing the accuracy of numerical results. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 50 条
  • [1] A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows
    Sun, Xiwan
    Huang, Wei
    Ou, Min
    Zhang, Ruirui
    Li, Shibin
    CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (04) : 771 - 784
  • [2] A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations
    Huang, Wei
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2015, 16 (07): : 551 - 561
  • [3] A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows
    Xiwan SUN
    Wei HUANG
    Min OU
    Ruirui ZHANG
    Shibin LI
    Chinese Journal of Aeronautics, 2019, 32 (04) : 771 - 784
  • [4] Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review
    Huang, Wei
    Chen, Zheng
    Yan, Li
    Yan, Bin-bin
    Du, Zhao-bo
    PROGRESS IN AEROSPACE SCIENCES, 2019, 105 : 31 - 39
  • [5] A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows
    Sun, Xi-wan
    Guo, Zhen-yun
    Huang, Wei
    Li, Shi-bin
    Yan, Li
    ACTA ASTRONAUTICA, 2017, 131 : 204 - 225
  • [6] Active control devices of spiked body for drag and heat flux reduction in supersonic/hypersonic flows: State-of-the-art review
    Meng, Yu-shan
    Wang, Zhong-wei
    Huang, Wei
    Niu, Yao-bin
    Xie, Zan
    Liu, Chao-yang
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [7] Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows
    Sun, Xi-wan
    Guo, Zhen-yun
    Huang, Wei
    Li, Shi-bin
    Yan, Li
    ACTA ASTRONAUTICA, 2016, 126 : 109 - 119
  • [8] Drag and heat reduction mechanism induced by jet interaction over a reusable launch vehicle in hypersonic flows
    Meng, Yu-shan
    Wang, Zhong-wei
    Shen, Yang
    Huang, Wei
    Niu, Yao-bin
    Yan, Li
    ACTA ASTRONAUTICA, 2022, 198 : 502 - 520
  • [9] Novel Combinational Aerodisk and Lateral Jet Concept for Drag and Heat Reduction in Hypersonic Flows
    Zhu, Liang
    Li, Yingkun
    Chen, Xiong
    Gong, Lunkun
    Xu, Jinsheng
    Feng, Zirui
    JOURNAL OF AEROSPACE ENGINEERING, 2019, 32 (01)
  • [10] Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows
    Karimi, Mohammad Sadegh
    Oboodi, Mohammad Javad
    HEAT AND MASS TRANSFER, 2019, 55 (02) : 547 - 569