FRB coherent emission from decay of Alfven waves

被引:86
作者
Kumar, Pawan [1 ]
Bosnjak, Zeljka [2 ]
机构
[1] Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA
[2] Univ Zagreb, Fac Elect Engn & Comp, Unska Ul 3, Zagreb 10000, Croatia
关键词
Radiation mechanisms: non-thermal; methods: analytical; stars: magnetars; radio continuum: transients; masers; FAST RADIO-BURST;
D O I
10.1093/mnras/staa774
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a model for fast radio bursts (FRBs) where a large-amplitude Alfven wave packet is launched by a disturbance near the surface of a magnetar, and a substantial fraction of the wave energy is converted to coherent radio waves at a distance of a few tens of neutron star radii. The wave amplitude at the magnetar surface should be about 10(11) G in order to produce an FRB of isotropic luminosity 10(44) erg s(-1). An electric current along the static magnetic field is required by Alfven waves with non-zero component of transverse wave vector. The current is supplied by counter-streaming electron-positron pairs, which have to move at nearly the speed of light at larger radii as the plasma density decreases with distance from the magnetar surface. The counter-streaming pairs are subject to two-stream instability, which leads to formation of particle bunches of size of the order of c/omega(p), where omega(p) is the plasma frequency. A strong electric field develops along the static magnetic field when the wave packet arrives at a radius where electron-positron density is insufficient to supply the current required by the wave. The electric field accelerates particle bunches along the curved magnetic field lines, and that produces the coherent FRB radiation. We provide a number of predictions of this model.
引用
收藏
页码:2385 / 2395
页数:11
相关论文
共 48 条
[41]   The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102 [J].
Tendulkar, S. P. ;
Bassa, C. G. ;
Cordes, J. M. ;
Bower, G. C. ;
Law, C. J. ;
Chatterjee, S. ;
Adams, E. A. K. ;
Bogdanov, S. ;
Burke-Spolaor, S. ;
Butler, B. J. ;
Demorest, P. ;
Hessels, J. W. T. ;
Kaspi, V. M. ;
Lazio, T. J. W. ;
Maddox, N. ;
Marcote, B. ;
McLaughlin, M. A. ;
Paragi, Z. ;
Ransom, S. M. ;
Scholz, P. ;
Seymour, A. ;
Spitler, L. G. ;
van Langevelde, H. J. ;
Wharton, R. S. .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 834 (02)
[42]  
Tendulkar S. P., 2014, THESIS
[43]  
THOMPSON C, 2019, APJ, V874, DOI DOI 10.3847/1538-4357/AAFDA3
[44]   A Population of Fast Radio Bursts at Cosmological Distances [J].
Thornton, D. ;
Stappers, B. ;
Bailes, M. ;
Barsdell, B. ;
Bates, S. ;
Bhat, N. D. R. ;
Burgay, M. ;
Burke-Spolaor, S. ;
Champion, D. J. ;
Coster, P. ;
D'Amico, N. ;
Jameson, A. ;
Johnston, S. ;
Keith, M. ;
Kramer, M. ;
Levin, L. ;
Milia, S. ;
Ng, C. ;
Possenti, A. ;
van Straten, W. .
SCIENCE, 2013, 341 (6141) :53-56
[45]  
Wang J.-S., 2019, APJ, V892, P135
[46]   On the Time-Frequency Downward Drifting of Repeating Fast Radio Bursts [J].
Wang, Weiyang ;
Zhang, Bing ;
Chen, Xuelei ;
Xu, Renxin .
ASTROPHYSICAL JOURNAL LETTERS, 2019, 876 (01)
[47]   EIKONAL METHOD IN MAGNETOHYDRODYNAMICS [J].
WEINBERG, S .
PHYSICAL REVIEW, 1962, 126 (06) :1899-&
[48]   A "Cosmic Comb" Model of Fast Radio Bursts [J].
Zhang, Bing .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 836 (02)