On the Aα spectral radius of digraphs with given parameters

被引:10
作者
Xi, Weige [1 ]
So, Wasin [2 ]
Wang, Ligong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] San Jose State Univ, Dept Math & Stat, San Jose, CA 95192 USA
基金
中国国家自然科学基金;
关键词
Strongly connected digraphs; adjacency matrix; signless Laplacian matrix; parameters; A(alpha) spectral radius; SIGNLESS LAPLACIAN; A(ALPHA)-SPECTRAL RADIUS; GRAPHS; BOUNDS;
D O I
10.1080/03081087.2020.1793879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a digraph and A(G) be the adjacency matrix of G. Let D(G) be the diagonal matrix with outdegrees of vertices of G. For any real alpha is an element of[0,1], define the matrix A alpha(G)as A alpha(G)=alpha D(G)+(1-alpha)A(G). The largest modulus of the eigenvalues of A alpha(G )is called the A alpha spectral radius ofG. In this paper, we determine the digraphs which attain the maximum (or minimum) A alpha spectral radius among all strongly connected digraphs with given parameters such as girth, clique number, vertex connectivity or arc connectivity. We also propose an open problem.
引用
收藏
页码:2248 / 2263
页数:16
相关论文
共 27 条
[1]  
Berman A., 1979, Nonnegative Matrix in the Mathematical Sciences
[2]  
Bondy JA, 1976, Graph Theory
[3]  
Brualdi R.A., 1983, Discrete Math, V43, P329
[4]   Extremal digraphs with given clique number [J].
Drury, S. W. ;
Lin, Huiqiu .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (02) :328-345
[5]   Solution of the conjecture of Brualdi and Li [J].
Drury, S. W. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3392-3399
[6]  
Guo HY, ARXIV180503456
[7]   Spectral radius and signless Laplacian spectral radius of strongly connected digraphs [J].
Hong, Wenxi ;
You, Lihua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 457 :93-113
[8]  
Horn R. A., 1985, Matrix analysis
[9]   Sharp bounds for the signless Laplacian spectral radius of digraphs [J].
Lang, Weiwei ;
Wang, Ligong .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 :43-49
[10]  
Li D, ARXIV180602603V1