The influence of magnetic field on electron beam generated plasmas

被引:33
作者
Petrov, G. M. [1 ]
Boris, D. R. [1 ]
Lock, E. H. [2 ]
Petrova, Tz B. [1 ]
Fernsler, R. F. [3 ]
Walton, S. G. [1 ]
机构
[1] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
[3] Sotera Def Solut Inc, Annapolis Jct, MD 20701 USA
关键词
electron beam; magnetic field; Boltzmann equation; plasma processing; TRANSPORT; KINETICS; ARGON;
D O I
10.1088/0022-3727/48/27/275202
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetically confined argon plasma in a long cylindrical tube driven by an electron beam is studied experimentally and theoretically. Langmuir probes are used to measure the electron energy distribution function, electron density and temperature in plasmas generated by 2 keV, 10 mA electron beams in a 25 mTorr argon background for magnetic field strengths of up to 200 Gauss. The experimental results agree with simulations done using a spatially averaged Boltzmann model adapted to treat an electron beam generated plasma immersed in a constant magnetic field. The confining effect of the magnetic field is studied theoretically using fluid and kinetic approaches. The fluid approach leads to two regimes of operation: weakly and strongly magnetized. The former is similar to the magnetic field-free case, while in the latter the ambipolar diffusion coefficient and electron density depend quadratically on the magnetic field strength. Finally, a more rigorous kinetic treatment, which accounts for the impact of the magnetic field over the whole distribution of electrons, is used for accurate description of the plasma.
引用
收藏
页数:8
相关论文
共 31 条
[11]   Cross-field diffusion in low-temperature plasma discharges of finite length [J].
Curreli, Davide ;
Chen, Francis F. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (06)
[12]   Electric probes for plasmas: The link between theory and instrument [J].
Demidov, VI ;
Ratynskaia, SV ;
Rypdal, K .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (10) :3409-3439
[13]   Electron acoustic solitons in the presence of an electron beam and superthermal electrons [J].
Devanandhan, S. ;
Singh, S. V. ;
Lakhina, G. S. ;
Bharuthram, R. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2011, 18 (05) :627-634
[14]   ELECTRON-ENERGY DISTRIBUTIONS IN E-BEAM GENERATED XE AND AR PLASMAS [J].
ELLIOTT, CJ ;
GREENE, AE .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (07) :2946-2953
[15]   Probe measurements of electron-energy distributions in plasmas: what can we measure and how can we achieve reliable results? [J].
Godyak, V. A. ;
Demidov, V. I. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (23)
[16]   Controlling the local chemical reactivity of graphene through spatial functionalization [J].
Hernandez, Sandra C. ;
Bezares, Francisco J. ;
Robinson, Jeremy T. ;
Caldwell, Joshua D. ;
Walton, Scott G. .
CARBON, 2013, 60 :84-93
[17]   Non-local collisionless and collisional electron transport in low-temperature plasma [J].
Kaganovich, I. D. ;
Demidov, V. I. ;
Adams, S. F. ;
Raitses, Y. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
[18]   Langmuir probe study of a magnetically enhanced RF plasma source at pressures below 0.1 Pa [J].
Kousal, Jaroslav ;
Tichy, Milan ;
Sebek, Ondrej ;
Cechvala, Juraj ;
Biederman, Hynek .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (04)
[19]  
Laframboise JG., 1966, THESIS U TORONTO
[20]   Experimental and theoretical evaluations of electron temperature in continuous electron beam generated plasmas [J].
Lock, E. H. ;
Fernsler, R. F. ;
Walton, S. G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2008, 17 (02)