The influence of magnetic field on electron beam generated plasmas

被引:33
作者
Petrov, G. M. [1 ]
Boris, D. R. [1 ]
Lock, E. H. [2 ]
Petrova, Tz B. [1 ]
Fernsler, R. F. [3 ]
Walton, S. G. [1 ]
机构
[1] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
[3] Sotera Def Solut Inc, Annapolis Jct, MD 20701 USA
关键词
electron beam; magnetic field; Boltzmann equation; plasma processing; TRANSPORT; KINETICS; ARGON;
D O I
10.1088/0022-3727/48/27/275202
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetically confined argon plasma in a long cylindrical tube driven by an electron beam is studied experimentally and theoretically. Langmuir probes are used to measure the electron energy distribution function, electron density and temperature in plasmas generated by 2 keV, 10 mA electron beams in a 25 mTorr argon background for magnetic field strengths of up to 200 Gauss. The experimental results agree with simulations done using a spatially averaged Boltzmann model adapted to treat an electron beam generated plasma immersed in a constant magnetic field. The confining effect of the magnetic field is studied theoretically using fluid and kinetic approaches. The fluid approach leads to two regimes of operation: weakly and strongly magnetized. The former is similar to the magnetic field-free case, while in the latter the ambipolar diffusion coefficient and electron density depend quadratically on the magnetic field strength. Finally, a more rigorous kinetic treatment, which accounts for the impact of the magnetic field over the whole distribution of electrons, is used for accurate description of the plasma.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Plasma atomic layer etching using conventional plasma equipment [J].
Agarwal, Ankur ;
Kushner, Mark J. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (01) :37-50
[2]  
[Anonymous], 2005, PRINCIPLES PLASMA DI, DOI [10.1002/0471724254, DOI 10.1002/0471724254]
[3]   Modeling of nonlocal electron kinetics in a low-pressure afterglow plasma [J].
Arslanbekov, RR ;
Kudryavtsev, AA .
PHYSICAL REVIEW E, 1998, 58 (06) :7785-7798
[4]   Electron-distribution-function cutoff mechanism in a low-pressure afterglow plasma [J].
Arslanbekov, RR ;
Kudryavtsev, AA ;
Tsendin, LD .
PHYSICAL REVIEW E, 2001, 64 (01) :10
[5]   Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures [J].
Baraket, M. ;
Walton, S. G. ;
Wei, Z. ;
Lock, E. H. ;
Robinson, J. T. ;
Sheehan, P. .
CARBON, 2010, 48 (12) :3382-3390
[6]   The functionalization of graphene using electron-beam generated plasmas [J].
Baraket, M. ;
Walton, S. G. ;
Lock, E. H. ;
Robinson, J. T. ;
Perkins, F. K. .
APPLIED PHYSICS LETTERS, 2010, 96 (23)
[7]   Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration: I. Experimental results [J].
Boris, D. R. ;
Petrov, G. M. ;
Lock, E. H. ;
Petrova, Tz B. ;
Fernsler, R. F. ;
Walton, S. G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (06)
[8]   Physics and phenomena in pulsed magnetrons: an overview [J].
Bradley, J. W. ;
Welzel, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (09)
[9]   HIGH-ENERGY ELECTRON-DISTRIBUTION IN AN ELECTRON-BEAM-GENERATED ARGON PLASMA [J].
BRETAGNE, J ;
DELOUYA, G ;
GODART, J ;
PUECH, V .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1981, 14 (07) :1225-1239
[10]  
Chen F. F., 1974, Introduction to plasma physics