Local and global factors affecting RNA sequencing analysis

被引:32
|
作者
Sendler, Edward [1 ]
Johnson, Graham D. [2 ]
Krawetz, Stephen A. [1 ,2 ]
机构
[1] Wayne State Univ, Sch Med, Dept Obstet & Gynecol, CS Mott Ctr Human Growth & Dev, Detroit, MI 48201 USA
[2] Wayne State Univ, Sch Med, CS Mott Ctr Human Growth & Dev, Ctr Mol Med & Genet, Detroit, MI 48201 USA
关键词
RNA; RNA sequencing; Sequence analysis; High-throughput RNA sequencing; SECONDARY STRUCTURE; EUKARYOTIC TRANSCRIPTOME; SEQ; QUANTIFICATION; ANNOTATION; BIASES;
D O I
10.1016/j.ab.2011.08.013
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput RNA sequencing (RNA-seq) continues to provide unparalleled insight into transcriptome complexity. Now the "gold standard" for assessing global transcript levels, RNA-seq is poised to revolutionize our understanding of transcription and posttranscriptional regulation of RNA. Despite significant advantages over prior experimental strategies, RNA-seq is not without pitfalls. We have identified a number of confounding factors that significantly affect sequencing coverage. These include regional CC content, preferential sites of fragmentation, and read "pile-up" due to primer affinity and transcript end effects. Independent of cell type and laboratory, when ignored, these factors can bias analyses. Understanding the underlying principles responsible for producing these artifacts is key to recognizing both their presence and how their effects may be controlled. Here we outline the causes of and strategies to avoid several previously unreported complicating factors common to RNA-seq experiments. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 322
页数:6
相关论文
共 50 条
  • [21] The hitchhikers' guide to RNA sequencing and functional analysis
    Chen, Jiung-Wen
    Shrestha, Lisa
    Green, George
    Leier, Andre
    Marquez-Lago, Tatiana T.
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [22] RNA sequencing validation of the Complexity INdex in SARComas prognostic signature
    Lesluyes, Tom
    Perot, Gaelle
    Largeau, Marine Roxane
    Brulard, Celine
    Lagarde, Pauline
    Dapremont, Valerie
    Lucchesi, Carlo
    Neuville, Agnes
    Terrier, Philippe
    Vince-Ranchere, Dominique
    Mendez-Lago, Maria
    Gut, Marta
    Gut, Ivo
    Coindre, Jean-Michel
    Chibon, Frederic
    EUROPEAN JOURNAL OF CANCER, 2016, 57 : 104 - 111
  • [23] Whole transcriptome analysis of chemically induced hepatocellular carcinoma using RNA-sequencing analysis
    Sun, Jie
    Wang, Jing
    Zhang, Na
    Yang, Renjun
    Chen, Keyang
    Kong, Derun
    FEBS OPEN BIO, 2019, 9 (11): : 1900 - 1908
  • [24] RNA-Sequencing Analysis of HepG2 Cells Treated with Atorvastatin
    Stormo, Camilla
    Kringen, Marianne K.
    Lyle, Robert
    Olstad, Ole Kristoffer
    Sachse, Daniel
    Berg, Jens P.
    Piehler, Armin P.
    PLOS ONE, 2014, 9 (08):
  • [25] Bioinformatic analysis of bacteria and host cell dual RNA-sequencing experiments
    Marsh, James W.
    Hayward, Regan J.
    Shetty, Amol C.
    Mahurkar, Anup
    Humphrys, Michael S.
    Myers, Garry S. A.
    BRIEFINGS IN BIOINFORMATICS, 2018, 19 (06) : 1115 - 1129
  • [26] Analysis of Transcriptome Complexity Through RNA Sequencing in Normal and Failing Murine Hearts
    Lee, Jae-Hyung
    Gao, Chen
    Peng, Guangdun
    Greer, Christopher
    Ren, Shuxun
    Wang, Yibin
    Xiao, Xinshu
    CIRCULATION RESEARCH, 2011, 109 (12) : 1332 - 1341
  • [27] Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing
    Schiano, Concetta
    Costa, Valerio
    Aprile, Marianna
    Grimaldi, Vincenzo
    Maiello, Ciro
    Esposito, Roberta
    Soricelli, Andrea
    Colantuoni, Vittorio
    Donatelli, Francesco
    Ciccodicola, Alfredo
    Napoli, Claudio
    CARDIOLOGY JOURNAL, 2017, 24 (05) : 539 - 553
  • [28] Transcriptome Analysis of the Model Protozoan, Tetrahymena thermophila, Using Deep RNA Sequencing
    Xiong, Jie
    Lu, Xingyi
    Zhou, Zhemin
    Chang, Yue
    Yuan, Dongxia
    Tian, Miao
    Zhou, Zhigang
    Wang, Lei
    Fu, Chengjie
    Orias, Eduardo
    Miao, Wei
    PLOS ONE, 2012, 7 (02):
  • [29] Toward global RNA structure analysis
    Mauger, David M.
    Weeks, Kevin M.
    NATURE BIOTECHNOLOGY, 2010, 28 (11) : 1178 - 1179
  • [30] Global transcriptional profiling of longissimus thoracis muscle tissue in fetal and juvenile domestic goat using RNA sequencing
    Wang, Y. H.
    Zhang, C. L.
    Plath, M.
    Fang, X. T.
    Lan, X. Y.
    Zhou, Y.
    Chen, H.
    ANIMAL GENETICS, 2015, 46 (06) : 655 - 665