Variation Inequalities for the Hardy-Littlewood Maximal Function on Finite Directed Graphs

被引:0
作者
Liu, Feng [1 ]
Zhang, Xiao [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Elect & Informat Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
finite directed graph; Hardy-Littlewood maximal operator; bounded variation; OPERATOR; REGULARITY; COMPACTNESS;
D O I
10.3390/math10060950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors establish the bounds for the Hardy-Littlewood maximal operator defined on a finite directed graph (G) over right arrow in the space BVp((G) over right arrow) of bounded p-variation functions. More precisely, the authors obtain the BVp norms of M-(G) over right arrow for some directed graphs (G) over right arrow.
引用
收藏
页数:21
相关论文
共 26 条
[11]  
Hajlasz P, 2010, P AM MATH SOC, V138, P165
[12]   Regularity of the fractional maximal function [J].
Kinnunen, J ;
Saksman, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :529-535
[13]   The Hardy-Littlewood maximal function of a Sobolev function [J].
Kinnunen, J .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :117-124
[14]  
Kinnunen J, 1998, J REINE ANGEW MATH, V503, P161
[15]  
Koranyi A., 1986, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V13, P389
[16]   ON THE VARIATION OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION [J].
Kurka, Ondrej .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) :109-133
[17]   On the variation of the Hardy-Littlewood maximal functions on finite graphs [J].
Liu, Feng ;
Xue, Qingying .
COLLECTANEA MATHEMATICA, 2021, 72 (02) :333-349
[18]   On the Regularity of the Multisublinear Maximal Functions [J].
Liu, Feng ;
Wu, Huoxiong .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (04) :808-817
[19]  
Luiro H, 2007, P AM MATH SOC, V135, P243
[20]   The Variation of the Fractional Maximal Function of a Radial Function [J].
Luiro, Hannes ;
Madrid, Jose .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (17) :5284-5298