A Note on Lower Bound of Centered L2-discrepancy on Combined Designs

被引:16
作者
Lei, Yi Ju [1 ]
Ou, Zu Jun [2 ,3 ]
Qin, Hong [2 ]
Zou, Na [4 ]
机构
[1] Xinxiang Univ, Dept Math, Xinxiang 453000, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Hubei, Peoples R China
[3] Jishou Univ, Coll Math & Comp Sci, Jishou 416000, Peoples R China
[4] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Centered L-2-discrepancy; optimal foldover plan; uniformity; uniformity pattern; OPTIMAL FOLDOVER PLANS;
D O I
10.1007/s10114-011-0009-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note provides a theoretical justification of optimal foldover plans in terms of uniformity. A new lower bound of the centered L-2-discrepancy values of combined designs is obtained, which can be used as a benchmark for searching optimal foldover plans. Our numerical results show that this lower bound is sharper than existing results when more factors reverse the signs in the initial design.
引用
收藏
页码:793 / 800
页数:8
相关论文
共 17 条
[1]   Optimal foldover plans for regular s-level fractional factorial designs [J].
Ai, Mingyao ;
Hickernell, Fred J. ;
Lin, Dennis K. J. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (07) :896-903
[2]  
[Anonymous], 1946, Biometrika, DOI [DOI 10.2307/2332195, DOI 10.1093/BIOMET/33.4.305]
[3]  
Box G. E., 1978, Statistics for experimenters, V664
[4]   Uniformity pattern and related criteria for two-level factorials [J].
Fang, KT ;
Qin, H .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (01) :1-11
[5]   A note on optimal foldover design [J].
Fang, KT ;
Lin, DKJ ;
Qin, H .
STATISTICS & PROBABILITY LETTERS, 2003, 62 (03) :245-250
[6]   A generalized discrepancy and quadrature error bound [J].
Hickernell, FJ .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :299-322
[7]   Maximal rank minimum aberration foldover plans for 2m-k supercript stop fractional factorial designs [J].
Jacroux, Mike .
METRIKA, 2007, 65 (02) :235-242
[8]  
[雷轶菊 Lei Yiju], 2010, [数学物理学报. A辑, Acta Mathematica Scientia], V30, P1555
[9]   Optimal foldover plans for blocked 2m-k fractional factorial designs [J].
Li, Fei ;
Jacroux, Mike .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (07) :2439-2452
[10]   Better foldover fractions for Resolution III 2k-p designs [J].
Li, H ;
Mee, RW .
TECHNOMETRICS, 2002, 44 (03) :278-283