A dual optimization approach for photoreduction of CO2 to alcohol in g-C3N4/BaTiO3 system: Heterojunction construction and ferroelectric polarization

被引:17
|
作者
Jia, Pengwei [1 ]
Li, Yuanliang [1 ]
Zheng, Zhanshen [1 ]
Liu, Yun [1 ]
Wang, Yan [1 ]
Liu, Tong [1 ]
机构
[1] North China Univ Sci & Technol, Coll Mat Sci & Engn, Key Lab Environm Funct Mat Tangshan City, Key Lab Inorgan Nonmet Mat, Tangshan 063210, Hebei, Peoples R China
关键词
CO2; reduction; Ferroelectric polarization; Heterojunction; Photocatalysis; ENHANCED PHOTOCATALYTIC ACTIVITY; DEGRADATION; EFFICIENCY; CONVERSION; MECHANISM; TRANSPORT; HYBRID; ENERGY; MICRO; FILMS;
D O I
10.1016/j.apsusc.2022.154310
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The improved separation efficiency of photogenerated electrons and holes is an effective way to improve pho-tocatalytic performance. Herein, the high efficiency sheet/fiber g-C3N4/BaTiO3 photocatalysts with built-in electric field are successfully synthesized by electrospinning and simple calcination method. Compared with pure g-C3N4 and BaTiO3, g-C3N4/BaTiO3 heterojunction possesses higher photogenerated electron-hole pairs separation efficiency and larger specific surface area, thus improving the photocatalytic activity of g-C3N4/ BaTiO3 catalysts. Besides, the ferroelectric polarization produced by external electric field significantly promotes the CO2 reduction performance of CNBT20 [the component with mass fractions BT / (CN/BT) = 20 %], whose reduction rates of CH3OH and CH3CH2OH are 1.44 and 1.50 times that of unpolarized CNBT20, accompanied with remarkable cyclic stability. The coupling effect of heterojunction and ferroelectric polarization improves the separation efficiency of photoexcited carriers in g-C3N4/BaTiO3 significantly, hence providing broad prospects for the combination of traditional semiconductors and ferroelectric materials to improve photocatalytic performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Achieving high CH4 selectivity in CO2 photoreduction via S-type MoO3/g-C3N4 heterojunction with Pt co-catalyst
    Wang, Tao
    Lu, Jiangfeng
    Chen, Jinshan
    Wang, Chi
    Li, Kai
    Mei, Yi
    CATALYSIS SCIENCE & TECHNOLOGY, 2025,
  • [42] Photocatalytic CO2 reduction and pesticide degradation over g-C3N4/Ce2S3 heterojunction
    Ubaidullah, Mohd
    Al-Enizi, Abdullah M.
    Nafady, Ayman
    Shaikh, Shoyebmohammad F.
    Kumar, K. Yogesh
    Prashanth, M. K.
    Parashuram, L.
    Jeon, Byong-Hun
    Raghu, M. S.
    Pandit, Bidhan
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [43] Photothermal CO2 Hydrogenation to Methanol over Ni-In2O3/g-C3N4 Heterojunction Catalysts
    Shan, Xuekai
    Zhang, Guolin
    Zhang, Ying
    Zhang, Shuobo
    Guo, Fang
    Xu, Qi
    CATALYSTS, 2024, 14 (11)
  • [44] Unveiling the synergistic role of nitrogen vacancies and Z-scheme heterojunction in g-C3N4/β-Bi2O3 hybrids for enhanced CO2 photoreduction
    Wang, Yang
    Ban, Chaogang
    Feng, Yajie
    Ma, Jiangping
    Ding, Junjie
    Wang, Xiaoxing
    Ruan, Lujie
    Duan, Youyu
    Brik, Mikhail G.
    Gan, Liyong
    Zhou, Xiaoyuan
    NANO ENERGY, 2024, 124
  • [45] EPR Investigation on Electron Transfer of 2D/3D g-C3N4/ZnO S-Scheme Heterojunction for Enhanced CO2 Photoreduction
    Sayed, Mahmoud
    Zhu, Bicheng
    Kuang, Panyong
    Liu, Xiangyu
    Cheng, Bei
    Al Ghamdi, Ahmed Abdullah
    Wageh, Swelm
    Zhang, Liuyang
    Yu, Jiaguo
    ADVANCED SUSTAINABLE SYSTEMS, 2022, 6 (01)
  • [46] Carbon dots-triggered the fabrication of miniature g-C3N4/CDs/WO3 S-scheme heterojunction for efficient CO2 photoreduction
    Kong, Xiangguang
    Fan, Jiajie
    Feng, Bingwei
    Li, Jun
    Yang, Guidong
    Xue, Chao
    CHEMICAL ENGINEERING JOURNAL, 2023, 476
  • [47] In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis
    Dong, Fan
    Zhao, Zaiwang
    Xiong, Ting
    Ni, Zilin
    Zhang, Wendong
    Sun, Yanjuan
    Ho, Wing-Kei
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) : 11392 - 11401
  • [48] Dual role of g-C3N4 microtubes in enhancing photocatalytic CO2 reduction of Co3O4 nanoparticles
    Cao, Hui
    Yan, Yumeng
    Wang, Yuan
    Chen, Fei-Fei
    Yu, Yan
    CARBON, 2023, 201 : 415 - 424
  • [49] Dual Z-Scheme BiOCl/g-C3N4/Ag2CrO4 Heterojunction for Boosting Photocatalytic CO2 Reduction
    Wang, Qing-shan
    Yuan, Yi-chao
    Hu, Xing
    Jin, Da-wei
    Zhang, Feng-kai
    Liu, Xiao-jing
    Deng, Jin-fan
    Pan, Wei-guo
    Guo, Rui-tang
    ENERGY & FUELS, 2024, 38 (05) : 4554 - 4565
  • [50] Boosting CO2 Photoreduction Efficiency of Carbon Nitride via S-scheme g-C3N4/Fe2TiO5 Heterojunction
    dos Santos, Gustavo
    Tian, Liang
    Goncalves, Renato
    Garcia, Hermenegildo
    Rossi, Liane
    ADVANCED FUNCTIONAL MATERIALS, 2025,