Boundedness and blow-up behavior for reaction-diffusion systems in a bounded domain

被引:16
|
作者
Zhang, J
机构
[1] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
[2] Sichuan Normal Univ, Dept Math, Chengdu 610068, Peoples R China
关键词
reaction-diffusion system; boundedness; blow-up;
D O I
10.1016/S0362-546X(97)00706-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:833 / 844
页数:12
相关论文
共 50 条
  • [41] Blow-Up Behavior of Solutions to Critical Hartree Equations on Bounded Domain
    Yang, Minbo
    Zhao, Shunneng
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
  • [42] Blow-up solutions for localized reaction-diffusion equations with variable exponents
    Liu, Bingchen
    Li, Fengjie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (14) : 1778 - 1788
  • [43] Blow-up analysis for a reaction-diffusion equation with gradient absorption terms
    Liang, Mengyang
    Fang, Zhong Bo
    Yi, Su-Cheol
    AIMS MATHEMATICS, 2021, 6 (12): : 13774 - 13796
  • [44] Numerical blow-up time and growth rate of a reaction-diffusion equation
    Rasheed, Maan A.
    Ghaffoori, Faez N.
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 805 - 813
  • [45] Global existence and blow-up to a reaction-diffusion system with nonlinear memory
    Du, LL
    Mu, CL
    Xiang, ZY
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (04) : 721 - 733
  • [46] Uniform blow-up profiles for nonlinear and nonlocal reaction-diffusion equations
    Liu, Qilin
    Chen, Yichao
    Lu, Shengqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1572 - 1583
  • [47] Blow-up rate estimates for a system of reaction-diffusion equations with absorption
    Xiang, Zhaoyin
    Chen, Qiong
    Mu, Chunlai
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) : 779 - 786
  • [48] Blow-up rate estimates for a doubly coupled reaction-diffusion system
    Zheng, SN
    Liu, BC
    Li, FJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) : 576 - 595
  • [49] Blow-up solutions to the Cauchy problem of a fractional reaction-diffusion system
    Ezi Wu
    Yanbin Tang
    Journal of Inequalities and Applications, 2015
  • [50] SINGLE-POINT BLOW-UP FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM
    Mahmoudi, Nejib
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (04): : 563 - 591