Output feedback stabilization of the Korteweg-de Vries equation

被引:28
作者
Marx, Swann [1 ]
Cerpa, Eduardo [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, GIPSA Lab, F-38000 Grenoble, France
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Avda Espana 1680, Valparaiso, Chile
关键词
Korteweg-de Vries equation; Output feedback; Backstepping Nonlinear system; LINEAR KDV EQUATION; GLOBAL STABILIZATION; NULL CONTROLLABILITY; SYSTEMS;
D O I
10.1016/j.automatica.2017.07.057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an output feedback control law for the Korteweg-de Vries equation. The control design is based on the backstepping method and the introduction of an appropriate observer. The local exponential stability of the closed-loop system is proven. Some numerical simulations are shown to illustrate this theoretical result. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 24 条
[1]  
[Anonymous], AM CONTR C
[2]  
[Anonymous], ADV DESIGN CONTROL
[3]  
Brezis H., 2011, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext
[4]   On the non-uniform null controllability of a linear KdV equation [J].
Carreno, N. ;
Guerrero, S. .
ASYMPTOTIC ANALYSIS, 2015, 94 (1-2) :33-69
[5]   CONTROL OF A KORTEWEG-DE VRIES EQUATION: A TUTORIAL [J].
Cerpa, Eduardo .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (01) :45-99
[6]   BOUNDARY CONTROLLABILITY OF THE KORTEWEG-DE VRIES EQUATION ON A BOUNDED DOMAIN [J].
Cerpa, Eduardo ;
Rivas, Ivonne ;
Zhang, Bing-Yu .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (04) :2976-3010
[7]   Rapid Stabilization for a Korteweg-de Vries Equation From the Left Dirichlet Boundary Condition [J].
Cerpa, Eduardo ;
Coron, Jean-Michel .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (07) :1688-1695
[8]   RAPID EXPONENTIAL STABILIZATION FOR A LINEAR KORTEWEG-DE VRIES EQUATION [J].
Cerpa, Eduardo ;
Crepeau, Emmanuelle .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03) :655-668
[9]   Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right [J].
Coron, Jean-Michel ;
Lu, Qi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (06) :1080-1120
[10]   A SIMPLE OBSERVER FOR NONLINEAR-SYSTEMS APPLICATIONS TO BIOREACTORS [J].
GAUTHIER, JP ;
HAMMOURI, H ;
OTHMAN, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (06) :875-880