Random attractors for damped stochastic wave equations with multiplicative noise

被引:49
作者
Fan, Xiaoming [1 ]
机构
[1] SW Jiaotong Univ, Dept Math, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
multiplicative noise; random attractor; Sine-Gordon equation; fractal dimension;
D O I
10.1142/S0129167X08004741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence of compact random attractors and their fractal dimension for the random dynamical systems determined by damped stochastic wave equations of Sine-Gordon type with linear multiplicative noise.
引用
收藏
页码:421 / 437
页数:17
相关论文
共 16 条
[1]  
Arnold L., 1998, Springer Monographs in Mathematics
[2]  
CHEPYZHOV V, 1991, INDIANA U MATH J, V140, P193
[3]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[4]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[5]   Hausdorff dimension of a random invariant set [J].
Debussche, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (10) :967-988
[6]   On the finite dimensionality of random attractors [J].
Debussche, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1997, 15 (04) :473-491
[7]   Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise [J].
Fan, Xiaoming ;
Wang, Yaguang .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (02) :381-396
[8]   Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise [J].
Fan, Xiaoming .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (04) :767-793
[9]   Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type [J].
Fan, XM ;
Zhou, SF .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (01) :253-266
[10]   Random attractor for a damped sine-Gordon equation with white noise [J].
Fan, XM .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (01) :63-76