机构:
Univ Paris 13, LIM&BIO Lab, UFR Sante, Med & Biol Humaine SMBH, Leonard Vinci 74,Rue Marcel Cachin, F-93017 Bobigny, FranceUniv Paris 13, LIM&BIO Lab, UFR Sante, Med & Biol Humaine SMBH, Leonard Vinci 74,Rue Marcel Cachin, F-93017 Bobigny, France
Lebbah, Mustapha
[1
]
Rogovschi, Nicoleta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 13, LIPN Lab, F-93430 Villetaneuse, FranceUniv Paris 13, LIM&BIO Lab, UFR Sante, Med & Biol Humaine SMBH, Leonard Vinci 74,Rue Marcel Cachin, F-93017 Bobigny, France
Rogovschi, Nicoleta
[2
]
Bennani, Younes
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 13, LIPN Lab, F-93430 Villetaneuse, FranceUniv Paris 13, LIM&BIO Lab, UFR Sante, Med & Biol Humaine SMBH, Leonard Vinci 74,Rue Marcel Cachin, F-93017 Bobigny, France
Bennani, Younes
[2
]
机构:
[1] Univ Paris 13, LIM&BIO Lab, UFR Sante, Med & Biol Humaine SMBH, Leonard Vinci 74,Rue Marcel Cachin, F-93017 Bobigny, France
[2] Univ Paris 13, LIPN Lab, F-93430 Villetaneuse, France
来源:
2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6
|
2007年
关键词:
D O I:
10.1109/IJCNN.2007.4371030
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper introduces a probabilistic self-organizing map for clustering, analysis and visualization of multivariate binary data. We propose a probabilistic formalism dedicated to binary data in which cells are represented by a Bernoulli distribution. Each cell is characterized by a prototype with the same binary coding as used in the data space and the probability of being different from this prototype. The learning algorithm, BeSOM, that we propose is an application of the EM standard algorithm. We illustrate the power of this method with two data sets taken from a public data set repository: a handwritten digit data set and a zoo data set. The results show a good quality of the topological ordering and homogenous clustering.
引用
收藏
页码:631 / +
页数:2
相关论文
共 24 条
[21]
Nadif M, 1997, APPL STOCH MODEL D A, V13, P269