Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA

被引:58
作者
Bhardwaj, G. [1 ]
Singh, S. K. [2 ]
Singh, I. V. [2 ]
Mishra, B. K. [2 ]
Rabczuk, Timon [3 ]
机构
[1] Natl Inst Technol Jalandhar, Dept Mech Engn, Jalandhar, Punjab, India
[2] Indian Inst Technol Roorkee, Dept Mech & Ind Engn, Roorkee, Uttarakhand, India
[3] Bauhaus Univ Weimar, Inst Struct Mech, Weimar, Germany
关键词
Homogenized; XIGA; Fatigue life; Interfacial cracks; Holes; Inclusions; NUMERICAL-SIMULATION; ISOGEOMETRIC ANALYSIS; FINITE-ELEMENTS; MESHFREE METHOD; INCLUSIONS; STRESS; NURBS;
D O I
10.1016/j.tafmec.2016.04.004
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, the fatigue life of an interfacial cracked plate is evaluated in the presence of flaws by homogenized extended isogeometric analysis (XIGA). In XIGA, the crack faces are modeled by discontinuous Heaviside jump functions, whereas the singularity in the stress field at the crack tip is modeled by crack tip enrichment functions. Holes and inclusions are modeled by Heaviside function and distance function respectively. The discontinuities are modeled in a selected region near the major crack whereas the region away from the crack is modeled by an equivalent homogeneous material. The stress intensity factors (SIFs) for the interface cracks are numerically evaluated using the domain based interaction integral approach. Paris law of fatigue crack growth is employed for computing the fatigue life of an interfacial cracked plate. The results show that the defects/ discontinuities away from the main crack barely influence the fatigue life. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:294 / 319
页数:26
相关论文
共 67 条
[1]   Evaluation of elastic properties of interpenetrating phase composites by mesh-free method [J].
Agarwal, Ankit ;
Singh, I. V. ;
Mishra, B. K. .
JOURNAL OF COMPOSITE MATERIALS, 2013, 47 (11) :1407-1423
[2]  
[Anonymous], 2011, ADV ENG SOFTW, DOI DOI 10.1016/j.advengsoft.2011.06.010
[3]  
[Anonymous], 1987, LECT NOTES PHYS
[4]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[5]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[6]  
2-S
[7]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[8]   A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM [J].
Benson, D. J. ;
Bazilevs, Y. ;
De Luycker, E. ;
Hsu, M. -C. ;
Scott, M. ;
Hughes, T. J. R. ;
Belytschko, T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (06) :765-785
[9]   Numerical simulations of cracked plate using XIGA under different loads and boundary conditions [J].
Bhardwaj, G. ;
Singh, I. V. ;
Mishra, B. K. ;
Kumar, Virender .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2016, 23 (06) :704-714
[10]   Fatigue crack growth in functionally graded material using homogenized XIGA [J].
Bhardwaj, G. ;
Singh, I. V. ;
Mishra, B. K. .
COMPOSITE STRUCTURES, 2015, 134 :269-284