Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate

被引:182
|
作者
Xu, Tianxiang [1 ,2 ,3 ]
Switkowski, Krzysztof [4 ,5 ]
Chen, Xin [1 ]
Liu, Shan [1 ]
Koynov, Kaloian [6 ]
Yu, Haohai [2 ,3 ]
Zhang, Huaijin [2 ,3 ]
Wang, Jiyang [2 ,3 ]
Sheng, Yan [1 ]
Krolikowski, Wieslaw [1 ,5 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Laser Phys Ctr, Canberra, ACT, Australia
[2] Shandong Univ, State Key Lab Crystal Mat, Jinan, Shandong, Peoples R China
[3] Shandong Univ, Inst Crystal Mat, Jinan, Shandong, Peoples R China
[4] Warsaw Univ Technol, Fac Phys, Warsaw, Poland
[5] Texas A&M Univ Qatar, Sci Program, Doha, Qatar
[6] Max Planck Inst Polymer Res, Mainz, Germany
基金
澳大利亚研究理事会;
关键词
LITHIUM-NIOBATE CRYSTALS; 2ND-HARMONIC GENERATION; LIGHT; BEAMS;
D O I
10.1038/s41566-018-0225-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The performance of many optical devices based on frequency conversion critically depends on spatial modulation of the nonlinear optical response of materials. This modulation ensures efficient energy exchange between optical waves at different frequencies via quasi-phase matching(1). In general, quasi-phase-matching structures, also known as nonlinear photonic crystals(2-4), offer a variety of properties and functionalities that cannot be obtained in uniform nonlinear crystals(5-9). So far, nonlinear photonic crystals have been restricted to one- or two-dimensional geometries owing to a lack of fabrication technologies capable of three-dimensional (3D) nonlinearity engineering. Here, we provide an experimental example of a 3D nonlinear photonic crystal, fabricated in ferroelectric barium calcium titanate, by applying an ultrafast light domain inversion approach. The resulting full flexibility of 3D nonlinearity modulation enables phase matching of nonlinear processes along an arbitrary direction, thereby removing constraints imposed by low-dimensional structures.
引用
收藏
页码:590 / +
页数:6
相关论文
共 50 条
  • [1] Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate
    Tianxiang Xu
    Krzysztof Switkowski
    Xin Chen
    Shan Liu
    Kaloian Koynov
    Haohai Yu
    Huaijin Zhang
    Jiyang Wang
    Yan Sheng
    Wieslaw Krolikowski
    Nature Photonics, 2018, 12 : 591 - 595
  • [2] A naturally grown three-dimensional nonlinear photonic crystal
    Xu, Tianxiang
    Lu, Dazhi
    Yu, Haohai
    Zhang, Huaijin
    Zhang, Yong
    Wang, Jiyang
    APPLIED PHYSICS LETTERS, 2016, 108 (05)
  • [3] Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal
    Dunzhao Wei
    Chaowei Wang
    Huijun Wang
    Xiaopeng Hu
    Dan Wei
    Xinyuan Fang
    Yong Zhang
    Dong Wu
    Yanlei Hu
    Jiawen Li
    Shining Zhu
    Min Xiao
    Nature Photonics, 2018, 12 : 596 - 600
  • [4] Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal
    Wei, Dunzhao
    Wang, Chaowei
    Wang, Huijun
    Hu, Xiaopeng
    Wei, Dan
    Fang, Xinyuan
    Zhang, Yong
    Wu, Dong
    Hue, Yanlei
    Lie, Jiawen
    Zhu, Shining
    Xiao, Min
    NATURE PHOTONICS, 2018, 12 (10) : 596 - +
  • [5] The effect of nonlinear exposure on bandgap of three-dimensional holographic photonic crystal
    Ren Xiao-Bin
    Zhai Tian-Rui
    Ren Zhi
    Lin Jing
    Jing, Zhou
    Liu Da-He
    ACTA PHYSICA SINICA, 2009, 58 (05) : 3208 - 3213
  • [6] Three-dimensional photonic crystal demultiplexers
    Badieirostami, M.
    Momeni, B.
    Adibi, A.
    PHOTONIC AND PHONONIC CRYSTAL MATERIALS AND DEVICES IX, 2009, 7223
  • [7] A three-dimensional optical photonic crystal
    Lin, SY
    Fleming, JG
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (11) : 1944 - 1947
  • [8] Three-dimensional photonic crystal sensors
    Lee, YJ
    Braun, PV
    NANOMATERIALS AND THEIR OPTICAL APPLICATIONS, 2003, 5224 : 86 - 93
  • [9] An ultrahigh sensitivity three-dimensional electric-field sensor with barium titanate crystal waveguides
    Luo, Mengxi
    Sun, DeGui
    Jin, Guangyong
    AIP ADVANCES, 2022, 12 (05)
  • [10] Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics
    Eng, LM
    Güntherodt, HJ
    Schneider, GA
    Köpke, U
    Saldaña, JM
    APPLIED PHYSICS LETTERS, 1999, 74 (02) : 233 - 235