Pornographic image detection utilizing deep convolutional neural networks

被引:42
|
作者
Nian, Fudong [1 ]
Li, Teng [1 ]
Wang, Yan [1 ]
Xu, Mingliang [2 ]
Wu, Jun [3 ,4 ]
机构
[1] Anhui Univ, Hefei, Peoples R China
[2] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Peoples R China
[3] Chongqing Kaize Technol Co Ltd, Chongqing, Peoples R China
[4] Anhui Suyuan Elect Technol Co Ltd, Anqing, Peoples R China
关键词
Image classification; Convolutional neural networks; Fast pornographic image detection;
D O I
10.1016/j.neucom.2015.09.135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many internet users are potential victims of the pornographic images and a large part of them are underage children. Thus, content-based pornographic images detection is an important task in computer vision and multimedia research. Previous solutions usually rely on hand-engineered visual features that are hard to analyze and select. In this paper, to detect pornographic images in any style accurately and efficiently with a single model, a novel scheme utilizing the deep convolutional neural networks (CNN) is proposed. The training data are obtained from internet followed by an improved sliding window method and some novel data augmentation approaches. Then a highly efficient training algorithm is proposed based on two strategies. The first is the pre-trained mid-level representations non-fixed fine-tuning strategy. The second is adjusting the training data at the appropriate time on the basis of the performance of the proposed network on the validation set. Furthermore, we introduce a fast image scanning method which is also based on the sliding window approach in the test. We further propose a fast forward pass method based on the "fixed-point algorithm". So our CNN could detect all scale images so fast by one forward pass. The effectiveness of the proposed method is demonstrated in experiments on the proposed dataset and the comparative results show that our method lead to state-of-the-art detection performance. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:283 / 293
页数:11
相关论文
共 50 条
  • [21] Evaluation of deep convolutional neural networks for glaucoma detection
    Phan, Sang
    Satoh, Shin'ichi
    Yoda, Yoshioki
    Kashiwagi, Kenji
    Oshika, Tetsuro
    Oshika, Tetsuro
    Hasegawa, Takashi
    Kashiwagi, Kenji
    Miyake, Masahiro
    Sakamoto, Taiji
    Yoshitomi, Takeshi
    Inatani, Masaru
    Yamamoto, Tetsuya
    Sugiyama, Kazuhisa
    Nakamura, Makoto
    Tsujikawa, Akitaka
    Sotozono, Chie
    Sonoda, Koh-Hei
    Terasaki, Hiroko
    Ogura, Yuichiro
    Fukuchi, Takeo
    Shiraga, Fumio
    Nishida, Kohji
    Nakazawa, Toru
    Aihara, Makoto
    Yamashita, Hidetoshi
    Hiyoyuki, Iijima
    JAPANESE JOURNAL OF OPHTHALMOLOGY, 2019, 63 (03) : 276 - 283
  • [22] Deep Convolutional Neural Networks for Fire Detection in Images
    Sharma, Jivitesh
    Granmo, Ole-Christoffer
    Goodwin, Morten
    Fidje, Jahn Thomas
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 183 - 193
  • [23] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [24] Evaluation of deep convolutional neural networks for glaucoma detection
    Sang Phan
    Shin’ichi Satoh
    Yoshioki Yoda
    Kenji Kashiwagi
    Tetsuro Oshika
    Japanese Journal of Ophthalmology, 2019, 63 : 276 - 283
  • [25] Smoke Detection Based on Deep Convolutional Neural Networks
    Tao, Chongyuan
    Zhang, Jian
    Wang, Pan
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 150 - 153
  • [26] Deep Convolutional Neural Networks for Forest Fire Detection
    Zhang, Qingjie
    Xu, Jiaolong
    Xu, Liang
    Guo, Haifeng
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION, 2016, 47 : 568 - 575
  • [27] Deep Convolutional Neural Networks for Breast Cancer Detection
    Roy, Ankit
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 169 - 171
  • [28] Image Copy Detection Based on Convolutional Neural Networks
    Zhang, Jing
    Zhu, Wenting
    Li, Bing
    Hu, Weiming
    Yang, Jinfeng
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 111 - 121
  • [29] Detection of the Information Hidden in Image by Convolutional Neural Networks
    Zubov, Ilya G.
    Lysenko, Nikolai V.
    Labkov, Gleb M.
    PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 393 - 394
  • [30] Smile detection in the wild with deep convolutional neural networks
    Chen, Junkai
    Ou, Qihao
    Chi, Zheru
    Fu, Hong
    MACHINE VISION AND APPLICATIONS, 2017, 28 (1-2) : 173 - 183