Deep Learning for Massive MIMO Channel State Acquisition and Feedback

被引:24
|
作者
Boloursaz Mashhadi, Mahdi [1 ]
Gunduz, Deniz [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
基金
欧洲研究理事会;
关键词
Massive MIMO; Deep learning; Channel state information; CSI FEEDBACK; FDD; INFORMATION; WIRELESS; SYSTEMS; DESIGN;
D O I
10.1007/s41745-020-00169-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Massive multiple-input multiple-output (MIMO) systems are a main enabler of the excessive throughput requirements in 5G and future generation wireless networks as they can serve many users simultaneously with high spectral and energy efficiency. To achieve this massive MIMO systems require accurate and timely channel state information (CSI), which is acquired by a training process that involves pilot transmission, CSI estimation, and feedback. This training process incurs a training overhead, which scales with the number of antennas, users, and subcarriers. Reducing the training overhead in massive MIMO systems has been a major topic of research since the emergence of the concept. Recently, deep learning (DL)-based approaches have been proposed and shown to provide significant reduction in the CSI acquisition and feedback overhead in massive MIMO systems compared to traditional techniques. In this paper, we present an overview of the state-of-the-art DL architectures and algorithms used for CSI acquisition and feedback, and provide further research directions.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条
  • [11] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [12] CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems
    Liao Y.
    Yao H.-M.
    Hua Y.-X.
    Zhao Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (06): : 1182 - 1189
  • [13] Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming
    Hojatian, Hamed
    Nadal, Jeremy
    Frigon, Jean-Francois
    Leduc-Primeau, Francois
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7086 - 7099
  • [14] Acquisition of channel state information for mmWave massive MIMO: traditional and machine learning-based approaches
    Qi, Chenhao
    Dong, Peihao
    Ma, Wenyan
    Zhang, Hua
    Zhang, Zaichen
    Li, Geoffrey Ye
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (08)
  • [15] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [16] Exploiting Bi-Directional Channel Reciprocity in Deep Learning for Low Rate Massive MIMO CSI Feedback
    Liu, Zhenyu
    Zhang, Lin
    Ding, Zhi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) : 889 - 892
  • [17] SCANet: A lightweight deep learning network for massive MIMO CSI feedback based on spatial and channel attention mechanism
    Chen, Huaqiang
    Tan, Weiqiang
    Guo, Jiajia
    Yang, Feiran
    PHYSICAL COMMUNICATION, 2024, 67
  • [18] Unsupervised Online Learning in Deep Learning-Based Massive MIMO CSI Feedback
    Cui, Yiming
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 2086 - 2090
  • [19] Joint CSI Acquisition Based on Deep Learning for FDD Massive MIMO Systems
    Li, Mengxin
    He, Jing
    Cheng, Yuan
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 980 - 987
  • [20] Deep Learning and Compressive Sensing-Based CSI Feedback in FDD Massive MIMO Systems
    Liang, Peizhe
    Fan, Jiancun
    Shen, Wenhan
    Qin, Zhijin
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 9217 - 9222