Electrode roughness and interfacial mixing effects on the tunnel junction thermal stability

被引:39
作者
Cardoso, S
Freitas, PP
Zhang, ZG
Wei, P
Barradas, N
Soares, JC
机构
[1] Inst Engn Sistemas & Comp, P-1000 Lisbon, Portugal
[2] Inst Super Tecn, P-1096 Lisbon, Portugal
[3] Inst Tecnol & Nucl, P-2685 Sacavem, Portugal
[4] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal
关键词
D O I
10.1063/1.1359216
中图分类号
O59 [应用物理学];
学科分类号
摘要
The thermal stability of magnetic tunnel junctions with ultrathin (<8 Angstrom) Al2O3 barriers was studied and compared with 15 Angstrom barriers. The tunnel magnetoresistance (TMR) decay cannot be explained only by Mn diffusion into the pinned CoFe layer since this diffusion starts above 300 degreesC independently of the barrier thickness, while the TMR degradation already occurs at 250-270 degreesC for the thinner barriers. The thermal stability is probably controlled by changes at the CoFe/Al2O3 interfaces and/or barrier structure. Structural analysis of 15 Angstrom barriers after annealing at 435 degreesC, shows the existence of an interface region (8-12 Angstrom thick) where CoFe and Al2O3 are found. This interfacial region can be explained by the increased roughness in the bottom electrode after annealing, as measured by atomic-force microscopy (from 1.5 to 4 Angstrom). Ultrathin barriers show a similar trend. The use of low-resistance junctions using thin barriers requires good control of the roughness of the low-resistance bottom electrodes. This is done by preannealing and low-angle ion-beam smoothing 500-Angstrom -thick Cu or Al films, which will then keep a roughness <2 Angstrom during processing temperatures up to 400 degreesC. Low-resistance junctions (R x A similar to 40-60 Ohm mum(2)) with 7 Angstrom barriers grown on 600 Angstrom Al buffers after the surface treatment show 25% TMR after annealing at 270 degreesC. (C) 2001 American Institute of Physics.
引用
收藏
页码:6650 / 6652
页数:3
相关论文
共 8 条
[1]   Simulated annealing analysis of Rutherford backscattering data [J].
Barradas, NP ;
Jeynes, C ;
Webb, RP .
APPLIED PHYSICS LETTERS, 1997, 71 (02) :291-293
[2]   Ion beam deposition and oxidation of spin-dependent tunnel junctions [J].
Cardoso, S ;
Gehanno, V ;
Ferreira, R ;
Freitas, PP .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) :2952-2954
[3]   Spin-tunnel-junction thermal stability and interface interdiffusion above 300 °C [J].
Cardoso, S ;
Freitas, PP ;
de Jesus, C ;
Wei, P ;
Soares, JC .
APPLIED PHYSICS LETTERS, 2000, 76 (05) :610-612
[4]  
FREITAS PP, IN PRESS IEEE T MAGN
[5]   Magnetic tunnel junctions thermally stable to above 300 °C [J].
Parkin, SSP ;
Moon, KS ;
Pettit, KE ;
Smith, DJ ;
Dunin-Borkowski, RE ;
McCartney, MR .
APPLIED PHYSICS LETTERS, 1999, 75 (04) :543-545
[6]   Low resistance and high thermal stability of spin-dependent tunnel junctions with synthetic antiferromagnetic CoFe/Ru/CoFe pinned layers [J].
Sun, JJ ;
Shimazawa, K ;
Kasahara, N ;
Sato, K ;
Saruki, S ;
Kagami, T ;
Redon, O ;
Araki, S ;
Morita, H ;
Matsuzaki, M .
APPLIED PHYSICS LETTERS, 2000, 76 (17) :2424-2426
[7]   THEORETICAL APPROXIMATIONS FOR DEPTH RESOLUTION CALCULATIONS IN IBA METHODS [J].
SZILAGYI, E ;
PASZTI, F ;
AMSEL, G .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1995, 100 (01) :103-121
[8]   Progress and outlook for MRAM technology [J].
Tehrani, S ;
Slaughter, JM ;
Chen, E ;
Durlam, M ;
Shi, J ;
DeHerrera, M .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) :2814-2819