Rolling-Element Bearing Fault Diagnosis Using Improved LeNet-5 Network

被引:58
作者
Wan, Lanjun [1 ,2 ]
Chen, Yiwei [1 ,2 ]
Li, Hongyang [1 ,2 ]
Li, Changyun [2 ]
机构
[1] Hunan Univ Technol, Sch Comp, Zhuzhou 412007, Peoples R China
[2] Hunan Univ Technol, Hunan Key Lab Intelligent Informat Percept & Proc, Zhuzhou 412007, Peoples R China
关键词
convolution neural network; LeNet-5; network; fault diagnosis; rolling-element bearing; vibration signals; CONVOLUTIONAL NEURAL-NETWORK; FEATURE-EXTRACTION; IDENTIFICATION; RECOGNITION;
D O I
10.3390/s20061693
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To address the problems of low recognition accuracy, slow convergence speed and weak generalization ability of traditional LeNet-5 network used in rolling-element bearing fault diagnosis, a rolling-element bearing fault diagnosis method using improved 2D LeNet-5 network is put forward. The following improvements to the traditional LeNet-5 network are made: the convolution and pooling layers are reasonably designed and the size and number of convolution kernels are carefully adjusted to improve fault classification capability; the batch normalization (BN) is adopted after each convolution layer to improve convergence speed; the dropout operation is performed after each full-connection layer except the last layer to enhance generalization ability. To further improve the efficiency and effectiveness of fault diagnosis, on the basis of improved 2D LeNet-5 network, an end-to-end rolling-element bearing fault diagnosis method based on the improved 1D LeNet-5 network is proposed, which can directly perform 1D convolution and pooling operations on raw vibration signals without any preprocessing. The results show that the improved 2D LeNet-5 network and improved 1D LeNet-5 network achieve a significant performance improvement than traditional LeNet-5 network, the improved 1D LeNet-5 network provides a higher fault diagnosis accuracy with a less training time in most cases, and the improved 2D LeNet-5 network performs better than improved 1D LeNet-5 network under small training samples and strong noise environment.
引用
收藏
页数:23
相关论文
共 43 条
[1]   Fault Detection and Severity Identification of Ball Bearings by Online Condition Monitoring [J].
Abdeljaber, Osama ;
Sassi, Sadok ;
Avci, Onur ;
Kiranyaz, Serkan ;
Ibrahim, Abdelrahman Aly ;
Gabbouj, Moncef .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (10) :8136-8147
[2]  
[Anonymous], 2014, Comput. Sci.
[3]  
[Anonymous], 2012, SEED FAULT TEST DAT
[4]  
[Anonymous], 2016, ADV NEUR INF PROC SY, DOI [DOI 10.2165/00129785-200404040-00005, DOI 10.1145/3065386]
[5]   Reliable Fault Diagnosis of Bearings Using Distance and Density Similarity on an Enhanced k-NN [J].
Appana, Dileep Kumar ;
Islam, Md. Rashedul ;
Kim, Jong-Myon .
ARTIFICIAL LIFE AND COMPUTATIONAL INTELLIGENCE, ACALCI 2017, 2017, 10142 :193-203
[6]   Improved Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicles [J].
Cao, Jingwei ;
Song, Chuanxue ;
Peng, Silun ;
Xiao, Feng ;
Song, Shixin .
SENSORS, 2019, 19 (18)
[7]   A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network [J].
de Oliveira, Mario A. ;
Monteiro, Andre, V ;
Vieira Filho, Jozue .
SENSORS, 2018, 18 (09)
[8]  
Dewi C, 2019, IEEE SYS MAN CYBERN, P2496, DOI 10.1109/SMC.2019.8913868
[9]   Convolutional Neural Network Based Bearing Fault Diagnosis [J].
Duy-Tang Hoang ;
Kang, Hee-Jun .
INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 :105-111
[10]   A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier [J].
Eren, Levent ;
Ince, Turker ;
Kiranyaz, Serkan .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (02) :179-189