TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in Chlamydomonas reinhardtii

被引:42
作者
Picariello, Tyler [1 ,4 ]
Hou, Yuqing [1 ]
Kubo, Tomohiro [2 ]
McNeill, Nathan A. [1 ]
Yanagisawa, Haruaki [3 ]
Oda, Toshiyuki [2 ]
Witman, George B. [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Radiol, Div Cell Biol & Imaging, Worcester, MA 01605 USA
[2] Univ Yamanashi, Interdisciplinary Grad Sch, Dept Anat & Struct Biol, Chuo Ku, Yamanashi, Japan
[3] Univ Tokyo, Grad Sch Med, Tokyo, Japan
[4] Sanofi Genzyme, Framingham, MA USA
来源
PLOS ONE | 2020年 / 15卷 / 05期
基金
日本学术振兴会; 美国国家卫生研究院;
关键词
INTRAFLAGELLAR TRANSPORT; GUIDE RNA; GENES; IFT; MUTANT; MUTATIONS; PROTEINS; KNOCKOUT; COMPLEX; CILIUM;
D O I
10.1371/journal.pone.0232594
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Generation and subsequent analysis of mutants is critical to understanding the functions of genes and proteins. Here we describe TIM, an efficient, cost-effective, CRISPR-based targeted insertional mutagenesis method for the model organism Chlamydomonas reinhardtii. TIM utilizes delivery into the cell of a Cas9-guide RNA (gRNA) ribonucleoprotein (RNP) together with exogenous double-stranded (donor) DNA. The donor DNA contains gene-specific homology arms and an integral antibiotic-resistance gene that inserts at the double-stranded break generated by Cas9. After optimizing multiple parameters of this method, we were able to generate mutants for six out of six different genes in two different cell-walled strains with mutation efficiencies ranging from 40% to 95%. Furthermore, these high efficiencies allowed simultaneous targeting of two separate genes in a single experiment. TIM is flexible with regard to many parameters and can be carried out using either electroporation or the glass-bead method for delivery of the RNP and donor DNA. TIM achieves a far higher mutation rate than any previously reported for CRISPR-based methods in C. reinhardtii and promises to be effective for many, if not all, non-essential nuclear genes.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] CRISPR/Cas9 editing of carotenoid genes in tomato
    D'Ambrosio, Caterina
    Stigliani, Adriana Lucia
    Giorio, Giovanni
    TRANSGENIC RESEARCH, 2018, 27 (04) : 367 - 378
  • [32] Programmable RNA recognition and cleavage by CRISPR/Cas9
    O'Connell, Mitchell R.
    Oakes, Benjamin L.
    Sternberg, Samuel H.
    East-Seletsky, Alexandra
    Kaplan, Matias
    Doudna, Jennifer A.
    NATURE, 2014, 516 (7530) : 263 - +
  • [33] CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering
    Singh, Amrita
    Chakraborty, Debojyoti
    Maiti, Souvik
    CHEMICAL SOCIETY REVIEWS, 2016, 45 (24) : 6666 - 6684
  • [34] Mutagenesis of putative ciliary genes with the CRISPR/Cas9 system in zebrafish identifies genes required for retinal development
    Hu, Ruikun
    Huang, Weilai
    Liu, Jiangfang
    Jin, Miaomiao
    Wu, Yue
    Li, Jingyu
    Wang, Jingyi
    Yu, Zehao
    Wang, Hong
    Cao, Ying
    FASEB JOURNAL, 2019, 33 (04) : 5248 - 5256
  • [35] Simple and Efficient CRISPR/Cas9-Mediated Targeted Mutagenesis in Xenopus tropicalis
    Nakayama, Takuya
    Fish, Margaret B.
    Fisher, Marilyn
    Oomen-Hajagos, Jamina
    Thomsen, Gerald H.
    Grainger, Robert M.
    GENESIS, 2013, 51 (12): : 835 - 843
  • [36] CRISPR/Cas9-mediated Targeted Mutagenesis of Inulin Biosynthesis in Rubber Dandelion
    Ariyaratne, Menaka
    King-Smith, Nathaniel
    Fresnedo-Ramirez, Jonathan
    Barker, David J.
    Cornish, Katrina
    JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2023, 148 (06) : 266 - 275
  • [37] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [38] Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System
    Liang, Zhen
    Zhang, Kang
    Chen, Kunling
    Gao, Caixia
    JOURNAL OF GENETICS AND GENOMICS, 2014, 41 (02) : 63 - 68
  • [39] Optimization of Genome Engineering Approaches with the CRISPR/Cas9 System
    Li, Kai
    Wang, Gang
    Andersen, Troels
    Zhou, Pingzhu
    Pu, William T.
    PLOS ONE, 2014, 9 (08):
  • [40] Disabling Cas9 by an anti-CRISPR DNA mimic
    Shin, Jiyung
    Jiang, Fuguo
    Liu, Jun-Jie
    Bray, Nicolas L.
    Rauch, Benjamin J.
    Baik, Seung Hyun
    Nogales, Eva
    Bondy-Denomy, Joseph
    Corn, Jacob E.
    Doudna, Jennifer A.
    SCIENCE ADVANCES, 2017, 3 (07):