STABILIZATION OF PORT-HAMILTONIAN SYSTEMS WITH DISCONTINUOUS ENERGY DENSITIES

被引:1
|
作者
Schmid, Jochen [1 ]
机构
[1] Fraunhofer Inst Ind Math ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
Stabilization of port-Hamiltonian systems; exponential stability; en-ergy densities of bounded variation; static linear boundary control; STABILITY;
D O I
10.3934/eect.2021063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an exponential stabilization result for linear port Hamiltonian systems of first order with quite general, not necessarily continuous, energy densities. In fact, we have only to require the energy density of the system to be of bounded variation. In particular, and in contrast to the previously known stabilization results, our result applies to vibrating strings or beams with jumps in their mass density and their modulus of elasticity.
引用
收藏
页码:1775 / 1795
页数:21
相关论文
共 50 条
  • [1] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [2] Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4440 - 4447
  • [3] Port-Hamiltonian systems with energy and power ports
    Krhac, Kaja
    Maschke, Bernhard
    van der Schaft, Arjan
    IFAC PAPERSONLINE, 2024, 58 (06): : 280 - 285
  • [4] Fixed-time stabilization control for port-Hamiltonian systems
    Liu, Xinggui
    Liao, Xiaofeng
    NONLINEAR DYNAMICS, 2019, 96 (02) : 1497 - 1509
  • [5] Stabilization of Unstable Distributed Port-Hamiltonian Systems in Scattering Form
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3116 - 3121
  • [6] Asymptotic stabilization via control by interconnection of port-Hamiltonian systems
    Castanos, Fernando
    Ortega, Romeo
    van der Schaft, Arjan
    Astolfi, Alessandro
    AUTOMATICA, 2009, 45 (07) : 1611 - 1618
  • [7] Fixed-time stabilization control for port-Hamiltonian systems
    Xinggui Liu
    Xiaofeng Liao
    Nonlinear Dynamics, 2019, 96 : 1497 - 1509
  • [8] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [9] A constructive procedure for energy shaping of port-Hamiltonian systems
    Borja, Pablo
    Cisneros, Rafael
    Ortega, Romeo
    AUTOMATICA, 2016, 72 : 230 - 234
  • [10] Neural Energy Casimir Control for Port-Hamiltonian Systems
    Xu, Liang
    Zakwan, Muhammad
    Ferrari-Trecate, Giancarlo
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4053 - 4058