Control Problem Related to 2D Stokes Equations with Variable Density and Viscosity

被引:11
作者
Baranovskii, Evgenii S. [1 ]
Lenes, Eber [2 ]
Mallea-Zepeda, Exequiel [3 ]
Rodriguez, Jonnathan [4 ]
Vasquez, Lautaro [3 ]
机构
[1] Voronezh State Univ, Dept Appl Math Informat & Mech, Voronezh 394018, Russia
[2] Univ Sinu, Area Ciencias Basicas Exactas, Grp Invest Deart, Cartagena 130001, Colombia
[3] Univ Tarapaca, Dept Matemat, Ave 18 Septiembre 2222, Arica 1000000, Chile
[4] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Antofagasta 1240000, Chile
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
关键词
Stokes equations; variable density; variable viscosity; mixed boundary conditions; Navier slip condition; control problems; optimal control; optimality conditions; variational inequalities; marginal function; OPTIMAL BOUNDARY CONTROL; FLOWS; SLIP; SOLVABILITY; REGULARITY; SYSTEM;
D O I
10.3390/sym13112050
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study an optimal control problem for the stationary Stokes equations with variable density and viscosity in a 2D bounded domain under mixed boundary conditions. On in-flow and out-flow parts of the boundary, nonhomogeneous Dirichlet boundary conditions are used, while on the solid walls of the flow domain, the impermeability condition and the Navier slip condition are provided. We control the system by the external forces (distributed control) as well as the velocity boundary control acting on a fixed part of the boundary. We prove the existence of weak solutions of the state equations, by firstly expressing the fluid density in terms of the stream function (Frolov formulation). Then, we analyze the control problem and prove the existence of global optimal solutions. Using a Lagrange multipliers theorem in Banach spaces, we derive an optimality system. We also establish a second-order sufficient optimality condition and show that the marginal function of this control system is lower semi-continuous.
引用
收藏
页数:22
相关论文
共 39 条
[1]  
Abergel F., 1990, THEOR COMP FLUID DYN, V1, P303, DOI [10.1007/bf00271794, DOI 10.1007/BF00271794, 10.1007/BF00271794]
[2]   Control problems for the stationary MHD equations under mixed boundary conditions [J].
Alekseev, Gennady ;
Brizitskii, Roman .
ALL-RUSSIAN CONFERENCE AND SCHOOL FOR YOUNG SCIENTISTS, DEVOTED TO 100TH ANNIVERSARY OF ACADEMICIAN L.V. OVSIANNIKOV - MATHEMATICAL PROBLEMS OF CONTINUUM MECHANICS, 2019, 1268
[4]  
[Anonymous], 1996, ESAIM CONTR OPTIM CA, DOI DOI 10.1051/COCV:1996102
[5]  
Antontsev S.N., 1983, BOUND VALUE PROBL
[6]   The optimal start control problem for 2D Boussinesq equations [J].
Baranovskii, E. S. .
IZVESTIYA MATHEMATICS, 2022, 86 (02) :221-242
[7]   Optimal boundary control of nonlinear-viscous fluid flows [J].
Baranovskii, E. S. .
SBORNIK MATHEMATICS, 2020, 211 (04) :505-520
[8]   Global solutions for a model of polymeric flows with wall slip [J].
Baranovskii, E. S. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) :5035-5043
[9]   Optimal Boundary Control of the Boussinesq Approximation for Polymeric Fluids [J].
Baranovskii, Evgenii S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (02) :623-645
[10]   Optimal Boundary Control of Non-Isothermal Viscous Fluid Flow [J].
Baranovskii, Evgenii S. ;
Domnich, Anastasia A. ;
Artemov, Mikhail A. .
FLUIDS, 2019, 4 (03)