Convergence rates of damped inerial dynamics from multi-degree-of-freedom system

被引:1
作者
Ge, Bin [1 ]
Zhuge, Xiangwu [1 ]
Ren, Haixin [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Lyapunove functions; Rate of convergence; Optimization; Multiple degrees; GRADIENT-LIKE SYSTEMS; LONG-TIME BEHAVIOR; HEAVY BALL; 2ND-ORDER; OPTIMIZATION; ASYMPTOTICS; EQUATION;
D O I
10.1007/s11590-022-01855-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we investigate the convergence rate of the following dynamic system in R-n (x) over dot (t) + A/t(theta)(x) over dot(t) + del F(x(t)) = 0, t > 0, where A denotes the constant positive definite matrix and the potential function F : R-n -> R is continuous differentiable. This system is of vital importance, especially in optimization and engineering. This article presents new convergence rates of the above dynamics when F(x) satisfies some local geometrical properties by constructing a proper Lyapunov function. Finally, some numerical experiments were performed to explain the convergence results.
引用
收藏
页码:2753 / 2774
页数:22
相关论文
共 34 条
[21]  
Laszlo, 2020, ARXIV200207154
[22]   Convergence rates for an inertial algorithm of gradient type associated to a smooth non-convex minimization [J].
Laszlo, Szilard Csaba .
MATHEMATICAL PROGRAMMING, 2021, 190 (1-2) :285-329
[23]   Convergence of analytic gradient-type systems with periodicity and its applications in Kuramoto models [J].
Li, Zhuchun ;
Xue, Xiaoping .
APPLIED MATHEMATICS LETTERS, 2019, 90 :194-201
[24]   A hybrid structural control system using a tuned liquid damper to reduce the wind induced motion of a base isolated structure [J].
Love, J. S. ;
Tait, M. J. ;
Toopchi-Nezhad, H. .
ENGINEERING STRUCTURES, 2011, 33 (03) :738-746
[25]   Constrained reliability-based optimization of linear tuned mass dampers for seismic control [J].
Marano, Giuseppe Carlo ;
Greco, Rita ;
Trentadue, Francesco ;
Chiaia, Bernardino .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (22-23) :7370-7388
[27]  
Nesterov Yu. E., 1983, Doklady Akademii Nauk SSSR, V269, P543
[28]  
Parikh Neal, 2014, Foundations and Trends in Optimization, V1, P127, DOI 10.1561/2400000003
[29]   Optimisation and asymptotic stability [J].
Polyak, B. T. ;
Shcherbakov, P. S. .
INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (11) :2404-2410
[30]  
Polyak BT., 1964, USSR Computational Mathematics and Mathematical Physics, V4, P1, DOI 10.1016/0041-5553(64)90137-5