Nonconvex Distributed Optimization via Lasalle and Singular Perturbations

被引:7
|
作者
Carnevale, Guido [1 ]
Notarstefano, Giuseppe [1 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Elect Elect & Informat Engn, I-40126 Bologna, Italy
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 7卷
基金
欧洲研究理事会;
关键词
Radio frequency; Convergence; Linear programming; Perturbation methods; Heuristic algorithms; Lyapunov methods; Control theory; Distributed control; control of networks; optimization; optimization algorithms; SUBGRADIENT METHODS; CONSENSUS; ALGORITHMS; CONVERGENCE;
D O I
10.1109/LCSYS.2022.3187918
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we address nonconvex distributed consensus optimization, a popular framework for distributed big-data analytics and learning. We consider the Gradient Tracking algorithm and, by resorting to an elegant system theoretical analysis, we show that agent estimates asymptotically reach consensus to a stationary point. We take advantage of suitable coordinates to write the Gradient Tracking as the interconnection of a fast dynamics and a slow one. To use a singular perturbation analysis, we separately study two auxiliary subsystems called boundary layer and reduced systems, respectively. We provide a Lyapunov function for the boundary layer system and use Lasalle-based arguments to show that trajectories of the reduced system converge to the set of stationary points. Finally, a customized version of a Lasalle's Invariance Principle for singularly perturbed systems is proved to show the convergence properties of the Gradient Tracking.
引用
收藏
页码:301 / 306
页数:6
相关论文
共 50 条
  • [41] Distributed Online Aggregative Optimization for Dynamic Multirobot Coordination
    Carnevale, Guido
    Camisa, Andrea
    Notarstefano, Giuseppe
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (06) : 3736 - 3743
  • [42] DISTRIBUTED NONCONVEX OPTIMIZATION FOR SPARSE REPRESENTATION
    Sun, Ying
    Scutari, Gesualdo
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4044 - 4048
  • [43] Distributed Nonconvex Optimization over Networks
    Di Lorenzo, Paolo
    Scutari, Gesualdo
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 229 - 232
  • [44] Linear Convergence of First- and Zeroth-Order Primal-Dual Algorithms for Distributed Nonconvex Optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Chai, Tianyou
    Johansson, Karl H.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4194 - 4201
  • [45] Uniform Nonconvex Optimization via Extremum Seeking
    Mimmo, N.
    Marconi, L.
    Notarstefano, G.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8263 - 8276
  • [46] Convergence and Privacy of Decentralized Nonconvex Optimization With Gradient Clipping and Communication Compression
    Li, Boyue
    Chi, Yuejie
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2025, 19 (01) : 273 - 282
  • [47] Beamforming via Nonconvex Linear Regression
    Jiang, Xue
    Zeng, Wen-Jun
    So, Hing Cheung
    Zoubir, Abdelhak M.
    Kirubarajan, Thiagalingam
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (07) : 1714 - 1728
  • [48] Accelerating Distributed Optimization via Over-the-Air Computing
    Mitsiou, Nikos A.
    Bouzinis, Pavlos S.
    Diamantoulakis, Panagiotis D.
    Schober, Robert
    Karagiannidis, George K.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (09) : 5565 - 5579
  • [49] Distributed Optimization With Asynchronous Computation and Event-Triggered Communication
    Dong, Ziwei
    Jin, Yaochu
    Mao, Shuai
    Ren, Wei
    Du, Wei
    Tang, Yang
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (02) : 1084 - 1099
  • [50] Distributed Gradient Tracking for Unbalanced Optimization With Different Constraint Sets
    Cheng, Songsong
    Liang, Shu
    Fan, Yuan
    Hong, Yiguang
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (06) : 3633 - 3640