Skin Lesion Images Segmentation: A Survey of the State-of-the-Art

被引:21
作者
Adeyinka, Adegun Adekanmi [1 ]
Viriri, Serestina [1 ]
机构
[1] Univ KwaZulu Natal, Sch Maths Stat & Comp Sci, Durban, South Africa
来源
MINING INTELLIGENCE AND KNOWLEDGE EXPLORATION, MIKE 2018 | 2018年 / 11308卷
关键词
Segmentation; Skin lesion; Evaluation metrics; Deep learning;
D O I
10.1007/978-3-030-05918-7_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a detailed and robust survey of the state-of-the-art algorithms and techniques for performing skin lesion segmentation. The approach used is the comparative analysis of the existing methods for skin lesion analysis, critical review of the performance evaluation of some recently developed algorithms for skin lesion images segmentation, and the study of current evaluating metrics used for performance analysis. The study highlights merits and demerits of the algorithms examined, observing the strength and weakness of each algorithm. An inference can thus be made from the analysis about the best performing algorithms. It is observed that the advancement of technology and availability of a large and voluminous data set for training the machine learning algorithms encourage the application of machine learning techniques such as deep learning for performing skin lesion images segmentation. This work shows that most deep learning techniques outperform some existing state-of-the arts algorithm for skin lesion images segmentation.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 28 条
[1]  
Alvarez D, 2017, Arxiv, DOI arXiv:1702.07333
[2]  
Attia M, 2017, Arxiv, DOI arXiv:1702.07963
[3]  
Berseth M, 2017, Arxiv, DOI arXiv:1703.00523
[4]  
Bi L, 2017, Arxiv, DOI [arXiv:1703.04197, DOI 10.48550/ARXIV.1703.04197]
[5]  
Cavalcanti P.G., 2013, Color Medical Image Analysis, P15, DOI [10.1007/978-94-007-5389-1_2, DOI 10.1007/978-94-007-5389-1_2]
[6]   A methodological approach to the classification of dermoscopy images [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Uddin, Bakhtiyar ;
Lyatornid, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) :362-373
[7]   Lesion border detection in dermoscopy images [J].
Celebi, M. Emre ;
Iyatomi, Hitoshi ;
Schaefer, Gerald ;
Stoecker, William V. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (02) :148-153
[8]  
Chang H, 2017, Arxiv, DOI arXiv:1703.00534
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]  
Galdran A, 2017, Arxiv, DOI [arXiv:1703.03702, DOI 10.48550/ARXIV.1703.03702, 10.48550/arXiv.1703.03702]