Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains

被引:67
|
作者
Li, Kaihui [2 ,3 ]
Gong, Yanming [2 ]
Song, Wei [2 ]
He, Guixiang [2 ]
Hu, Yukun [2 ]
Tian, Changyan [2 ]
Liu, Xuejun [1 ,2 ]
机构
[1] China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China
[2] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Key Lab Biogeog & Bioresource Arid Land, Urumqi 830011, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
Alpine grassland; Greenhouse gas emissions; Nitrogen deposition; Methane; Carbon dioxide; Nitrous oxide; METHANE; FOREST; STEPPE; IMPACT;
D O I
10.1016/j.chemosphere.2012.02.077
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:140 / 143
页数:4
相关论文
共 50 条
  • [1] Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China
    Li, Yuanyuan
    Dong, Shikui
    Liu, Shiliang
    Zhou, Huakun
    Gao, Qingzhu
    Cao, Guangmin
    Wang, Xuexia
    Su, Xukun
    Zhang, Yong
    Tang, Lin
    Zhao, Haidi
    Wu, Xiaoyu
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 80 : 306 - 314
  • [2] Fluxes of CO2, CH4 and N2O from alpine grassland in the Tibetan Plateau
    Zhiyong Pei
    Hua Ouyang
    Caiping Zhou
    Xingliang Xu
    Journal of Geographical Sciences, 2003, 13 (1) : 27 - 34
  • [4] Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils
    Maljanen, M
    Hytönen, J
    Martikainen, PJ
    PLANT AND SOIL, 2001, 231 (01) : 113 - 121
  • [5] Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils
    Marja Maljanen
    Jyrki Hytönen
    Pertti J. Martikainen
    Plant and Soil, 2001, 231 : 113 - 121
  • [6] Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China
    Wei, Da
    Xu-Ri
    Wang, Yinghong
    Wang, Yuesi
    Liu, Yongwen
    Yao, Tandong
    PLANT AND SOIL, 2012, 359 (1-2) : 45 - 55
  • [7] Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland
    Merbold, L.
    Steinlin, C.
    Hagedorn, F.
    BIOGEOSCIENCES, 2013, 10 (05) : 3185 - 3203
  • [8] CO2, CH4 AND N2O FLUXES IN AN ULTISOL TREATED WITH SEWAGE SLUDGE AND CULTIVATED WITH CASTOR BEAN
    Chiaradia, Jonas Jacob
    Chiba, Marcio Koiti
    de Andrade, Cristiano Alberto
    do Carmo, Janaina Braga
    de Oliveira, Claudeir
    Lavorenti, Arquimedes
    REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2009, 33 (06): : 1863 - 1870
  • [9] Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands
    Alm J.
    Saarnio S.
    Nykänen H.
    Silvola J.
    Martikainen P.J.
    Biogeochemistry, 1999, 44 (2) : 163 - 186
  • [10] Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands
    Alm, J
    Saarnio, S
    Nykänen, H
    Silvola, J
    Martikainen, PJ
    BIOGEOCHEMISTRY, 1999, 44 (02) : 163 - 186