SOURCES OF EEG ACTIVITY MOST RELEVANT TO PERFORMANCE OF BRAIN-COMPUTER INTERFACE BASED ON MOTOR IMAGERY

被引:18
|
作者
Frolov, Alexander [1 ]
Husek, Dusan [2 ]
Bobrov, Pavel [1 ,3 ]
Korshakov, Alexey [4 ]
Chernikova, Lyudmila [5 ]
Konovalov, Rodion [5 ]
Mokienko, Olesya [1 ]
机构
[1] RAS, Inst Higher Nervous Activ & Neurophysiol, Moscow 117901, Russia
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 8, Czech Republic
[3] VSB Tech Univ Ostrava, Fac Elect & Informat, Ostrava, Czech Republic
[4] Kurchatov Inst, Russian Res Ctr, Moscow, Russia
[5] RAMS, Res Ctr Neurol, Moscow, Russia
关键词
Brain-computer interface; independent component analysis; pattern classification; motor imagery; inverse problem; fMRI; EEG; SINGLE-TRIAL EEG; SOMATOSENSORY CORTEX; MU-RHYTHM; HAND AREA; FMRI; CLASSIFICATION; REPRESENTATIONS; COMMUNICATION; LOCALIZATION; SENSORIMOTOR;
D O I
10.14311/NNW.2012.22.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper examines sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface. To identify individual source contribution into electroencephalogram recorded during the training Independent Component Analysis was used. Then those independent components for which the BCI system classification accuracy was at maximum were treated as relevant to performing the motor imagery tasks, since they demonstrated well exposed event related de-synchronization and event related synchronization of the sensorimotor it-rhythm during imagining of command ipsilateral hand movements. To reveal neurophysiological nature of these components we have solved the inverse EEG problem to locate the sources of brain activity causing these components to appear in EEG. The sources were located in hand representation areas of the primary sensorimotor cortex. Their positions practically coincide with the regions of brain activity during the motor imagination obtained in fMRI study. Individual geometry of brain and its covers provided by anatomical MR images was taken into account when localizing the sources.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [41] A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke
    Ang, Kai Keng
    Chua, Karen Sui Geok
    Phua, Kok Soon
    Wang, Chuanchu
    Chin, Zheng Yang
    Kuah, Christopher Wee Keong
    Low, Wilson
    Guan, Cuntai
    CLINICAL EEG AND NEUROSCIENCE, 2015, 46 (04) : 310 - 320
  • [42] Improving Performance of Motor Imagery-Based Brain-Computer Interface in Poorly Performing Subjects Using a Hybrid-Imagery Method Utilizing Combined Motor and Somatosensory Activity
    Park, Sangin
    Ha, Jihyeon
    Kim, Laehyun
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1064 - 1074
  • [43] Is Implicit Motor Imagery a Reliable Strategy for a Brain-Computer Interface?
    Osuagwu, Bethel A.
    Zych, Magdalena
    Vuckovic, Aleksandra
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (12) : 2239 - 2248
  • [44] Motor Imagery Brain-Computer Interface for RPAS Command and Control
    Arnaldo, Rosa
    Gomez Comendador, Fernando
    Perez, Luis
    Rodriguez, Alvaro
    ADVANCES IN HUMAN FACTORS AND SYSTEMS INTERACTION, 2018, 592 : 325 - 335
  • [45] Towards Enhanced EEG-based Authentication with Motor Imagery Brain-Computer Interface
    Wu, Bingkun
    Meng, Weizhi
    Chiu, Wei-Yang
    PROCEEDINGS OF THE 38TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2022, 2022, : 799 - 812
  • [46] Towards Enhancing Motor Imagery Based Brain-Computer Interface Performance by Integrating Speed of Imagined Movement
    Xie, Tao
    Yao, Lin
    Sheng, Xinjun
    Zhang, Dingguo
    Zhu, Xiangyang
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2014, PT I, 2014, 8917 : 234 - 241
  • [47] Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates
    Vasilyev, Anatoly
    Liburkina, Sofya
    Yakovlev, Lev
    Perepelkina, Olga
    Kaplan, Alexander
    NEUROPSYCHOLOGIA, 2017, 97 : 56 - 65
  • [48] A Filtering Method for Classification of Motor-Imagery EEG Signals for Brain-Computer Interface
    Ramya, Pinisetty Sri
    Yashasvi, Kondabolu
    Anjum, Arshiya
    Bhattacharyya, Abhijit
    Pachori, Ram Bilas
    PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 354 - 360
  • [49] Optimizing Motor Imagery Parameters for Robotic Arm Control by Brain-Computer Interface
    Hayta, Unal
    Irimia, Danut Constantin
    Guger, Christoph
    Erkutlu, Ibrahim
    Guzelbey, Ibrahim Halil
    BRAIN SCIENCES, 2022, 12 (07)
  • [50] How many channels are suitable for independent component analysis in motor imagery brain-computer interface
    Zhou, Bangyan
    Wu, Xiaopei
    Ruan, Jing
    Lv, Zhao
    Zhang, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 50 : 103 - 120