SOURCES OF EEG ACTIVITY MOST RELEVANT TO PERFORMANCE OF BRAIN-COMPUTER INTERFACE BASED ON MOTOR IMAGERY

被引:18
|
作者
Frolov, Alexander [1 ]
Husek, Dusan [2 ]
Bobrov, Pavel [1 ,3 ]
Korshakov, Alexey [4 ]
Chernikova, Lyudmila [5 ]
Konovalov, Rodion [5 ]
Mokienko, Olesya [1 ]
机构
[1] RAS, Inst Higher Nervous Activ & Neurophysiol, Moscow 117901, Russia
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 8, Czech Republic
[3] VSB Tech Univ Ostrava, Fac Elect & Informat, Ostrava, Czech Republic
[4] Kurchatov Inst, Russian Res Ctr, Moscow, Russia
[5] RAMS, Res Ctr Neurol, Moscow, Russia
关键词
Brain-computer interface; independent component analysis; pattern classification; motor imagery; inverse problem; fMRI; EEG; SINGLE-TRIAL EEG; SOMATOSENSORY CORTEX; MU-RHYTHM; HAND AREA; FMRI; CLASSIFICATION; REPRESENTATIONS; COMMUNICATION; LOCALIZATION; SENSORIMOTOR;
D O I
10.14311/NNW.2012.22.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper examines sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface. To identify individual source contribution into electroencephalogram recorded during the training Independent Component Analysis was used. Then those independent components for which the BCI system classification accuracy was at maximum were treated as relevant to performing the motor imagery tasks, since they demonstrated well exposed event related de-synchronization and event related synchronization of the sensorimotor it-rhythm during imagining of command ipsilateral hand movements. To reveal neurophysiological nature of these components we have solved the inverse EEG problem to locate the sources of brain activity causing these components to appear in EEG. The sources were located in hand representation areas of the primary sensorimotor cortex. Their positions practically coincide with the regions of brain activity during the motor imagination obtained in fMRI study. Individual geometry of brain and its covers provided by anatomical MR images was taken into account when localizing the sources.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [31] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [32] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)
  • [33] Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface
    Azab, Ahmed M.
    Mihaylova, Lyudmila
    Ang, Kai Keng
    Arvaneh, Mahnaz
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (07) : 1352 - 1359
  • [34] Improving The Performance of Motor Imagery Based Brain-Computer Interface Using Phase Space Reconstruction
    Bagh, Niraj
    Reddy, M. Ramasubba
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 3075 - 3078
  • [35] Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface
    Park, Seung-Min
    Yu, Xinyang
    Chum, Pharino
    Lee, Woo-Young
    Sim, Kwee-Bo
    OPTIK, 2017, 129 : 163 - 171
  • [36] Pattern Recognition of Motor Imagery EEG Signal in Noninvasive Brain-Computer Interface
    Qu, Shen
    Liu, Jingmeng
    Chen, Weihai
    Zhang, Jianbin
    Chen, Weidong
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 1814 - 1819
  • [37] Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface
    Emami, Zahra
    Chau, Tom
    CLINICAL NEUROPHYSIOLOGY, 2018, 129 (06) : 1268 - 1275
  • [38] Reducing False Triggering Caused by Irrelevant Mental Activities in Brain-Computer Interface Based on Motor Imagery
    Zhou, Lujia
    Tao, Xuewen
    He, Feng
    Zhou, Peng
    Qi, Hongzhi
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3638 - 3648
  • [39] A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection
    Lo, Chi-Chun
    Chien, Tsung-Yi
    Chen, Yu-Chun
    Tsai, Shang-Ho
    Fang, Wai-Chi
    Lin, Bor-Shyh
    SENSORS, 2016, 16 (02):
  • [40] Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP
    Yi, Weibo
    Qiu, Shuang
    Wang, Kun
    Qi, Hongzhi
    Zhao, Xin
    He, Feng
    Zhou, Peng
    Yang, Jiajia
    Ming, Dong
    JOURNAL OF NEURAL ENGINEERING, 2017, 14 (02)