SOURCES OF EEG ACTIVITY MOST RELEVANT TO PERFORMANCE OF BRAIN-COMPUTER INTERFACE BASED ON MOTOR IMAGERY

被引:18
|
作者
Frolov, Alexander [1 ]
Husek, Dusan [2 ]
Bobrov, Pavel [1 ,3 ]
Korshakov, Alexey [4 ]
Chernikova, Lyudmila [5 ]
Konovalov, Rodion [5 ]
Mokienko, Olesya [1 ]
机构
[1] RAS, Inst Higher Nervous Activ & Neurophysiol, Moscow 117901, Russia
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 8, Czech Republic
[3] VSB Tech Univ Ostrava, Fac Elect & Informat, Ostrava, Czech Republic
[4] Kurchatov Inst, Russian Res Ctr, Moscow, Russia
[5] RAMS, Res Ctr Neurol, Moscow, Russia
关键词
Brain-computer interface; independent component analysis; pattern classification; motor imagery; inverse problem; fMRI; EEG; SINGLE-TRIAL EEG; SOMATOSENSORY CORTEX; MU-RHYTHM; HAND AREA; FMRI; CLASSIFICATION; REPRESENTATIONS; COMMUNICATION; LOCALIZATION; SENSORIMOTOR;
D O I
10.14311/NNW.2012.22.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper examines sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface. To identify individual source contribution into electroencephalogram recorded during the training Independent Component Analysis was used. Then those independent components for which the BCI system classification accuracy was at maximum were treated as relevant to performing the motor imagery tasks, since they demonstrated well exposed event related de-synchronization and event related synchronization of the sensorimotor it-rhythm during imagining of command ipsilateral hand movements. To reveal neurophysiological nature of these components we have solved the inverse EEG problem to locate the sources of brain activity causing these components to appear in EEG. The sources were located in hand representation areas of the primary sensorimotor cortex. Their positions practically coincide with the regions of brain activity during the motor imagination obtained in fMRI study. Individual geometry of brain and its covers provided by anatomical MR images was taken into account when localizing the sources.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [1] EEG datasets for motor imagery brain-computer interface
    Cho, Hohyun
    Ahn, Minkyu
    Ahn, Sangtae
    Kwon, Moonyoung
    Jun, Sung Chan
    GIGASCIENCE, 2017, 6 (07): : 1 - 8
  • [2] Lateralization of EEG Patterns in Humans during Motor Imagery of Arm Movements in the Brain-Computer Interface
    Vasilyev, A. N.
    Liburkina, S. P.
    Kaplan, A. Ya.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2016, 66 (03) : 302 - 312
  • [3] Hybrid brain-computer interface with motor imagery and error-related brain activity
    Mousavi, Mahta
    Krol, Laurens R.
    de Sa, Virginia R.
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (05)
  • [4] A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface
    Ang, Kai Keng
    Guan, Cuntai
    Chua, Karen Sui Geok
    Ang, Beng Ti
    Kuah, Christopher Wee Keong
    Wang, Chuanchu
    Phua, Kok Soon
    Chin, Zheng Yang
    Zhang, Haihong
    CLINICAL EEG AND NEUROSCIENCE, 2011, 42 (04) : 253 - 258
  • [5] Learning-based EEG rhythm analysis for the enhancement of motor imagery-based brain-computer interface performance
    Wu, Xiaopei
    Ouyang, Rui
    Zhang, Chao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [6] On the Deep Learning Models for EEG-Based Brain-Computer Interface Using Motor Imagery
    Zhu, Hao
    Forenzo, Dylan
    He, Bin
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 2283 - 2291
  • [7] A Motor Imagery Based Brain-Computer Interface Speller
    Xia, Bin
    Yang, Jing
    Cheng, Conghui
    Xie, Hong
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2013, 7903 : 413 - 421
  • [8] Performance variation in motor imagery brain-computer interface: A brief review
    Ahn, Minkyu
    Jun, Sung Chan
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 : 103 - 110
  • [9] Neurofeedback-based motor imagery training for brain-computer interface (BCI)
    Hwang, Han-Jeong
    Kwon, Kiwoon
    Im, Chang-Hwang
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 179 (01) : 150 - 156
  • [10] Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface
    Corsi, Marie-Constance
    Chavez, Mario
    Schwartz, Denis
    Hugueville, Laurent
    Khambhati, Ankit N.
    Bassett, Danielle S.
    Fallani, Fabrizio De Vico
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (01)