Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

被引:2
作者
Chehab, Jean-Paul [1 ]
Raydan, Marcos [2 ]
机构
[1] Univ Picardie Jules Verne, LAMFA, CNRS, UMR 7352, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Simon Bolivar, Dept Comp Cient & Estadist, Ap 89000, Caracas 1080A, Venezuela
关键词
preconditioning; cones of matrices; gradient method; minimal residual method; APPROXIMATE-INVERSE; ITERATIVE METHOD; EQUATIONS;
D O I
10.3390/math4030046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We focus on inverse preconditioners based on minimizing F (X) = 1 - cos (XA, I), where XA is the preconditioned matrix and A is symmetric and positive definite. We present and analyze gradient-type methods to minimize F (X) on a suitable compact set. For this, we use the geometrical properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the special properties of F (X) on the feasible set. Preliminary and encouraging numerical results are also presented in which dense and sparse approximations are included.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Generalized inverse problems for part symmetric matrices on a subspace in structural dynamic model updating
    Liu, Xian-xia
    Li, Jiao-fen
    Hu, Xi-Yan
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 110 - 121
  • [42] Banded target matrices and recursive FSAI for parallel preconditioning
    Luca Bergamaschi
    Ángeles Martínez
    Numerical Algorithms, 2012, 61 : 223 - 241
  • [43] Multigrid preconditioning and Toeplitz matrices
    Huckle, T
    Staudacher, J
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2002, 13 : 81 - 105
  • [44] Banded target matrices and recursive FSAI for parallel preconditioning
    Bergamaschi, Luca
    Martinez, Angeles
    NUMERICAL ALGORITHMS, 2012, 61 (02) : 223 - 241
  • [45] Preconditioning spectral element schemes for definite and indefinite problems
    Shapira, Y
    Israeli, M
    Sidi, A
    Zrahia, U
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1999, 15 (05) : 535 - 543
  • [46] LOW-RANK APPROXIMATE INVERSE FOR PRECONDITIONING TENSOR-STRUCTURED LINEAR SYSTEMS
    Giraldi, L.
    Nouy, A.
    Legrain, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04) : A1850 - A1870
  • [47] High Performance Inverse Preconditioning
    George A. Gravvanis
    Archives of Computational Methods in Engineering, 2009, 16 : 77 - 108
  • [48] EXPLOITING LOWER PRECISION ARITHMETIC IN SOLVING SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEMS AND LEAST SQUARES PROBLEMS
    Higham, Nicholas J.
    Pranesh, Srikara
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01) : A258 - A277
  • [49] Accurate computation of the Moore-Penrose inverse of strictly totally positive matrices
    Marco, Ana
    Martinez, Jose-Javier
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 : 299 - 308
  • [50] Stochastic preconditioning for diagonally dominant matrices
    Qian, Haifeng
    Sapatnekar, Sachin S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03) : 1178 - 1204