Feature Based Sentiment Analysis for Service Reviews

被引:0
作者
Abirami, Ariyur Mahadevan [1 ]
Askarunisa, Abdulkhader [2 ]
机构
[1] Thiagarajar Coll Engn, Madurai, Tamil Nadu, India
[2] Vickram Coll Engn, Madurai, Tamil Nadu, India
关键词
Sentiment analysis; Opinion mining; Sentiment classifier; TF-IDF; Linear regression; online reviews; SOCIAL MEDIA;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Sentiment Analysis deals with the analysis of emotions, opinions and facts in the sentences which are expressed by the people. It allows us to track attitudes and feelings of the people by analyzing blogs, comments, reviews and tweets about all the aspects. The development of Internet has strong influence in all types of industries like tourism, healthcare and any business. The availability of Internet has changed the way of accessing the information and sharing their experience among users. Social media provide this information and these comments are trusted by other users. This paper recognizes the use and impact of social media on healthcare industry by analyzing the users' feelings expressed in the form of free text, thereby gives the quality indicators of services or features related with them. In this paper, a sentiment classifier model using improved Term Frequency Inverse Document Frequency (TFIDF) method and linear regression model has been proposed to classify online reviews, tweets or customer feedback for various features. The model involves the process of gathering online user reviews about hospitals and analyzes those reviews in terms of sentiments expressed. Information Extraction process filters irrelevant reviews, extracts sentimental words of features identified and quantifies the sentiment of features using sentiment dictionary. Emotionally expressed positive or negative words are assigned weights using the classification prescribed in the dictionary. The sentiment analysis on tweets/reviews is done for various features using Natural Language Processing (NLP) and Information Retrieval (IR) techniques. The proposed linear regression model using the senti-score predicts the star rating of the feature of service. The statistical results show that improved TF-IDF method gives better accuracy when compared with TF and TF-IDF methods, used for representing the text. The senti-score obtained as a result of text analysis (user feedback) on features gives not only the opinion summarization but also the comparative results on various features of different competitors. This information can be used by business to focus on the low scored features so as to improve their business and ensure a very high level of user satisfaction.
引用
收藏
页码:650 / 670
页数:21
相关论文
共 50 条
  • [31] Sentiment Analysis of IMDb Movie Reviews: A Comparative Analysis of Feature Selection and Feature Extraction Techniques
    Karak, Gahina
    Mishra, Shubham
    Bandyopadhyay, Arkadyuti
    Rohith, Pavirala Ranga Sai
    Rathore, Hemant
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 283 - 294
  • [32] Sentiment Classification of Spanish Reviews: An Approach based on Feature Selection and Machine Learning Methods
    del Pilar Salas-Zarate, Maria
    Andres Paredes-Valverde, Mario
    Limon-Romero, Jorge
    Tlapa, Diego
    Baez-Lopez, Yolanda
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2016, 22 (05) : 691 - 708
  • [33] CROSA: Context-aware cloud service ranking approach using online reviews based on sentiment analysis
    Ben-Abdallah, Emna
    Boukadi, Khouloud
    Lloret, Jaime
    Hammami, Mohamed
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (07)
  • [34] Sentiment Analysis Based Product Rating Using Textual Reviews
    Sindhu, C.
    Vyas, Dyawanapally Veda
    Pradyoth, Kommareddy
    2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, 2017, : 727 - 731
  • [35] Consumer reviews sentiment analysis based on CNN-BiLSTM
    Guo X.
    Zhao N.
    Cui S.
    1600, Systems Engineering Society of China (40): : 653 - 663
  • [36] LIWC-Based Sentiment Analysis in Spanish Product Reviews
    Lopez-Lopez, Estanislao
    del Pilar Salas-Zarate, Maria
    Almela, Angela
    Angel Rodriguez-Garcia, Miguel
    Valencia-Garcia, Rafael
    Alor-Hernandez, Giner
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 11TH INTERNATIONAL CONFERENCE, 2014, 290 : 379 - 386
  • [37] Sentiment Analysis on Movie Reviews Using Ensemble Features and Pearson Correlation Based Feature Selection
    Rangkuti, Fachrul Rozy Saputra
    Fauzi, M. Ali
    Sari, Yuita Arum
    Sari, Eka Dewi Lukmana
    PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2018), 2018, : 88 - 91
  • [38] Feature-Based Sentiment Analysis for Arabic Language
    Alhamad, Ghady
    Kurdy, Mohamad-Bassam
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (11) : 455 - 462
  • [39] Classification of Customer Reviews based on Sentiment Analysis
    Graebner, Dietmar
    Zanker, Markus
    Fliedl, Guenther
    Fuchs, Matthias
    INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2012, 2012, : 460 - 470
  • [40] Aspect Based Sentiment Analysis on Product Reviews
    Rodrigues, Anisha P.
    Chiplunkar, Niranjan N.
    2018 FOURTEENTH INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING (ICINPRO) - 2018, 2018, : 112 - 117