Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2

被引:11
|
作者
Kosillo, Polina [1 ]
Ahmed, Kamran M. [1 ]
Aisenberg, Erin E. [2 ]
Karalis, Vasiliki [1 ]
Roberts, Bradley M. [3 ]
Cragg, Stephanie J. [3 ]
Bateup, Helen S. [1 ,2 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[3] Univ Oxford, Dept Physiol Physiol Anat & Genet, Oxford, England
[4] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
来源
ELIFE | 2022年 / 11卷
基金
美国国家卫生研究院;
关键词
mTORC1; mTORC2; raptor; rictor; dopamine neurons; TSC; Mouse; COMPLEX; 1; TUBEROUS SCLEROSIS; PARKINSONS-DISEASE; SUBSTANTIA-NIGRA; MAMMALIAN TARGET; BASAL GANGLIA; BRAIN; AKT; RELEASE; RICTOR;
D O I
10.7554/eLife.75398
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] mTORC1 and mTORC2 expression in inner retinal neurons and glial cells
    Losiewicz, Mandy K.
    Elghazi, Lynda
    Fingar, Diane C.
    Rajala, Raju V. S.
    Lentz, Stephen, I
    Fort, Patrice E.
    Abcouwer, Steven F.
    Gardner, Thomas W.
    EXPERIMENTAL EYE RESEARCH, 2020, 197
  • [2] mTORC1 and mTORC2 have largely distinct functions in Purkinje cells
    Angliker, Nico
    Burri, Michael
    Zaichuk, Mariana
    Fritschy, Jean-Marc
    Rueegg, Markus A.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2015, 42 (08) : 2595 - 2612
  • [3] mTORC1 and mTORC2 in cancer and the tumor microenvironment
    Kim, L. C.
    Cook, R. S.
    Chen, J.
    ONCOGENE, 2017, 36 (16) : 2191 - 2201
  • [4] Both mTORC1 and mTORC2 are involved in the regulation of cell adhesion
    Chen, Long
    Xu, Baoshan
    Liu, Lei
    Liu, Chunxiao
    Luo, Yan
    Chen, Xin
    Barzegar, Mansoureh
    Chung, Jun
    Huang, Shile
    ONCOTARGET, 2015, 6 (09) : 7136 - 7150
  • [5] Pathogenic Role of mTORC1 and mTORC2 in Pulmonary Hypertension
    Tang, Haiyang
    Wu, Kang
    Wang, Jian
    Vinjamuri, Sujana
    Gu, Yali
    Song, Shanshan
    Wang, Ziyi
    Zhang, Qian
    Balistrieri, Angela
    Ayon, Ramon J.
    Rischard, Franz
    Vanderpool, Rebecca
    Chen, Jiwang
    Zhou, Guofei
    Desai, Ankit A.
    Black, Stephen M.
    Garcia, Joe G. N.
    Yuan, Jason X-J
    Makino, Ayako
    JACC-BASIC TO TRANSLATIONAL SCIENCE, 2018, 3 (06): : 744 - 762
  • [6] mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells
    Smrz, Daniel
    Kim, Mi-Sun
    Zhang, Shuling
    Mock, Beverly A.
    Smrzova, Sarka
    DuBois, Wendy
    Simakova, Olga
    Maric, Irina
    Wilson, Todd M.
    Metcalfe, Dean D.
    Gilfillan, Alasdair M.
    BLOOD, 2011, 118 (26) : 6803 - 6813
  • [7] mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation
    Ding, Xiaolei
    Bloch, Wilhelm
    Iden, Sandra
    Ruegg, Markus A.
    Hall, Michael N.
    Leptin, Maria
    Partridge, Linda
    Eming, Sabine A.
    NATURE COMMUNICATIONS, 2016, 7 : 13226
  • [8] Rapamycin inhibits mSin1 phosphorylation independently of mTORC1 and mTORC2
    Luo, Yan
    Liu, Lei
    Wu, Yang
    Singh, Karnika
    Su, Bing
    Zhang, Nan
    Liu, Xiaowei
    Shen, Yangmei
    Huang, Shile
    ONCOTARGET, 2015, 6 (06) : 4286 - 4298
  • [9] Langerhans cell homeostasis in mice is dependent on mTORC1 but not mTORC2 function
    Kellersch, Bettina
    Brocker, Thomas
    BLOOD, 2013, 121 (02) : 298 - 307
  • [10] mTORC1 and mTORC2 differentially promote natural killer cell development
    Yang, Chao
    Tsaih, Shirng-Wern
    Lemke, Angela
    Flister, Michael J.
    Thakar, Monica S.
    Malarkannan, Subramaniam
    ELIFE, 2018, 7