Metal phosphides and borides as the catalytic host of sulfur cathode for lithium-sulfur batteries

被引:29
|
作者
Gao, Rui [1 ,2 ]
Wang, Zhenyu [2 ]
Liu, Sheng [2 ]
Shao, Guangjie [1 ]
Gao, Xueping [2 ]
机构
[1] Yanshan Univ, Coll Environm & Chem Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Nankai Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-sulfur batteries; sulfur cathode; catalytic host; metal phosphides; metal borides; LI-S BATTERIES; REDOX REACTION; POLYSULFIDES; CONVERSION; NANOPARTICLES; ANODE; ELECTROLYTE; COMPOSITES; CAPACITY; DENSITY;
D O I
10.1007/s12613-022-2451-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-sulfur batteries are one of the most competitive high-energy batteries due to their high theoretical energy density of 2600 W center dot h center dot kg(-1). However, their commercialization is limited by poor cycle stability mainly due to the low intrinsic electrical conductivity of sulfur and its discharged products (Li2S2/Li2S), the sluggish reaction kinetics of sulfur cathode, and the "shuttle effect" of soluble intermediate lithium polysulfides in ether-based electrolyte. To address these challenges, catalytic hosts have recently been introduced in sulfur cathodes to enhance the conversion of soluble polysulfides to the final solid products and thus prevent the dissolution and loss of active-sulfur material. In this review, we summarize the recent progress on the use of metal phosphides and borides of different dimensions as the catalytic host of sulfur cathodes and demonstrate the catalytic conversion mechanism of sulfur cathodes with the help of metal phosphides and borides for high-energy and long-life lithium-sulfur batteries. Finally, future outlooks are proposed on developing advanced catalytic host materials to improve battery performance.
引用
收藏
页码:990 / 1002
页数:13
相关论文
共 50 条
  • [21] Bronze TiO2 as a cathode host for lithium-sulfur batteries
    Dong, Wenjing
    Wang, Di
    Li, Xiaoyun
    Yao, Yuan
    Zhao, Xu
    Wang, Zhao
    Wang, Hong-En
    Li, Yu
    Chen, Lihua
    Qian, Dong
    Su, Bao-Lian
    JOURNAL OF ENERGY CHEMISTRY, 2020, 48 : 259 - 266
  • [22] Advances in the Catalytic Mechanism of Metal Oxides for Lithium-Sulfur Batteries
    Min, Yi
    Zou, Xiaohong
    Lu, Qian
    Cai, Wei
    Bu, Yunfei
    SMALL, 2025,
  • [23] Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries
    Ye, Huan
    Yin, Ya-Xia
    Guo, Yu-Guo
    ELECTROCHIMICA ACTA, 2015, 185 : 62 - 68
  • [24] Research Progress of Sulfur Cathode with High Sulfur Content for Lithium-Sulfur Batteries
    Wu Q.
    Zhang W.
    Yu C.
    Cheng S.
    Xie J.
    Cailiao Daobao/Materials Reports, 2023, 37 (15):
  • [25] A review of cathode materials in lithium-sulfur batteries
    Yang, Liwen
    Li, Qian
    Wang, Yang
    Chen, Yanxiao
    Guo, Xiaodong
    Wu, Zhenguo
    Chen, Guang
    Zhong, Benhe
    Xiang, Wei
    Zhong, Yanjun
    IONICS, 2020, 26 (11) : 5299 - 5318
  • [26] A review of cathode materials in lithium-sulfur batteries
    Liwen Yang
    Qian Li
    Yang Wang
    Yanxiao Chen
    Xiaodong Guo
    Zhenguo Wu
    Guang Chen
    Benhe Zhong
    Wei Xiang
    Yanjun Zhong
    Ionics, 2020, 26 : 5299 - 5318
  • [27] Hybrid cathode materials for lithium-sulfur batteries
    Choudhury, Soumyadip
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 303 - 310
  • [28] Nitrogen-doped MoS2 as a catalytic sulfur host for lithium-sulfur batteries
    Cho, Jinil
    Ryu, Seokgyu
    Gong, Yong Jun
    Pyo, Seonmi
    Yun, Heejun
    Kim, Heebae
    Lee, Jeewon
    Yoo, Jeeyoung
    Kim, Youn Sang
    CHEMICAL ENGINEERING JOURNAL, 2022, 439
  • [29] Application of Metal Compounds in Cathode Materials and Interlayers for Lithium-Sulfur Batteries
    Hu, Kun
    Guo, Jin
    Zhang, Mingang
    Lian, Jinyi
    Zhang, Yixuan
    Li, Zhanlong
    Cailiao Daobao/Materials Reports, 2022, 36 (19):
  • [30] Sulfur-Nickel Foam as Cathode Materials for Lithium-Sulfur Batteries
    Cheng, J. J.
    Zhu, J. T.
    Pan, Y.
    Ma, Z. S.
    Song, H. J.
    Pan, J. A.
    Li, Z. Z.
    Lu, C.
    ECS ELECTROCHEMISTRY LETTERS, 2015, 4 (02) : A19 - A21