Recent advances towards aqueous hydrogen peroxide formation in a direct current plasma-liquid system

被引:16
作者
Chen, Qiang [1 ,4 ]
Li, Junshuai [2 ,3 ]
Chen, Qiang [1 ,4 ]
Ostrikov, Kostya [5 ,6 ]
机构
[1] Xiamen Univ, Fujian Prov Key Lab Plasma & Magnet Resonance, Key Lab Electromagnet Wave Sci & Detect Technol, Shenzhen Res Inst,Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
[2] Lanzhou Univ, LONGi Inst Future Technol, Lanzhou, Peoples R China
[3] Lanzhou Univ, Sch Mat & Energy, Lanzhou, Peoples R China
[4] Beijing Inst Graph Commun, Lab Plasma Phys & Mat, Beijing, Peoples R China
[5] Queensland Univ Technol QUT, Sch Chem & Phys, Brisbane, Qld, Australia
[6] Queensland Univ Technol QUT, QUT Ctr Mat Sci, Brisbane, Qld, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
GLOW-DISCHARGE ELECTROLYSIS; OPTICAL-EMISSION; HYDROXYL RADICALS; GAS-PHASE; PHOTOCHEMICAL OXIDATION; INTERFACIAL REACTIONS; WATER; H2O2; DEGRADATION; IONS;
D O I
10.1049/hve2.12189
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aqueous phase hydrogen peroxide (H2O2aq) produced from the plasma-liquid interactions can directly or synergistically (with other substances) affect the liquid chemistry, and therefore it is important to unfold the H(2)O(2aq )formation mechanism. However, up to now, a consensus on the H2O2aq formation mechanism is not reached. This review aims to survey the recent advances on the understanding of the H2O2aq formation mechanism in the system of a direct current discharge plasma operated over a liquid electrode. Theoretical and experimental analyses indicate that the recombination of dissolved OH radicals (OHaq) is the dominant process for the H(2)O(2aq )formation, while the purported plasma-induced photolysis of water and the dissolution of gaseous H2O2 are ruled out.
引用
收藏
页码:405 / 419
页数:15
相关论文
共 136 条
[1]   The Role of Interfacial Reactions in Determining Plasma-Liquid Chemistry [J].
Anderson, Carly E. ;
Cha, Nico R. ;
Lindsay, Alexander D. ;
Clark, Douglas S. ;
Graves, David B. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2016, 36 (06) :1393-1415
[2]   Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis [J].
Attri, Pankaj ;
Kim, Yong Hee ;
Park, Dae Hoon ;
Park, Ji Hoon ;
Hong, Young J. ;
Uhm, Han Sup ;
Kim, Kyoung-Nam ;
Fridman, Alexander ;
Choi, Eun Ha .
SCIENTIFIC REPORTS, 2015, 5
[3]   Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields [J].
Baba, Kazuhiko ;
Kaneko, Toshiro ;
Hatakeyama, Rikizo ;
Motomiya, Kenichi ;
Tohji, Kazuyuki .
CHEMICAL COMMUNICATIONS, 2010, 46 (02) :255-257
[4]  
Barbusinski K, 2009, ECOL CHEM ENG S, V16, P347
[5]   Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations [J].
Benard, N. ;
Moreau, E. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (14)
[6]   Electrostatic modelling of dual frequency rf plasma discharges [J].
Boyle, PC ;
Ellingboe, AR ;
Turner, MM .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2004, 13 (03) :493-503
[7]   Plasma electrochemistry in ionic liquids: deposition of copper nanoparticles [J].
Brettholle, M. ;
Hoefft, O. ;
Klarhoefer, L. ;
Mathes, S. ;
Maus-Friedrichs, W. ;
El Abedin, S. Zein ;
Krischok, S. ;
Janek, J. ;
Endres, F. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (08) :1750-1755
[8]  
Brown S.C., 1967, Basic data of plasma physics, 1966, V2nd
[9]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[10]   Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode [J].
Bruggeman, Peter ;
Ribezl, Eva ;
Maslani, Alan ;
Degroote, Joris ;
Malesevic, Alexander ;
Rego, Robby ;
Vierendeels, Jan ;
Leys, Christophe .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2008, 17 (02)