Vapour-phase hydrothermal synthesis of Ni2P nanocrystallines on carbon fiber cloth for high-efficiency H2 production and simultaneous urea decomposition

被引:57
作者
Zhang, Xian [1 ,2 ]
Liu, Yanyan [1 ,2 ]
Xiong, Qizhong [1 ,2 ]
Liu, Guoqiang [1 ,2 ]
Zhao, Cuijiao [1 ,2 ]
Wang, Guozhong [1 ]
Zhang, Yunxia [1 ]
Zhang, Haimin [1 ]
Zhao, Huijun [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, CAS Ctr Excellence Nanosci,Ctr Environm & Energy, Anhui Key Lab Nanomat & Nanotechnol,Key Lab Mat P, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[3] Griffith Univ, Ctr Clean Environm & Energy, Gold Coast Campus, Nathan, Qld 4222, Australia
关键词
Ni2P nanocrystallines; vapour-phase hydrothermal method; urea oxidation reaction; hydrogen evolution reaction; HYDROGEN EVOLUTION REACTION; ELECTROCATALYTIC OXIDATION; MOLYBDENUM PHOSPHIDE; GENERATING HYDROGEN; NANOWIRE ARRAYS; WATER; NICKEL; NANOSHEETS; ELECTROOXIDATION; NANOPARTICLES;
D O I
10.1016/j.electacta.2017.09.097
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ni2P nanocrystallines grown on carbon fiber cloth (Ni2P/CFC) was successfully achieved by a facile vapour-phase hydrothermal method. The as-prepared Ni2P/CFC, as an electrocatalyst, exhibited superior electrocatalytic activities toward urea oxidation reaction (UOR) with a potential of 1.42 V (vs. RHE) delivering a current density of 10 mAcm (2) and hydrogen evolution reaction (HER) with overpotentials of 90 and 155 mV at current densities of 10 and 100 mAcm (2) in alkaline media. On this basis, a Ni2P/CFC constructed two-electrode system for high-efficiency H-2 production and simultaneous urea decomposition was therefore established using commercial urea as reaction source. Besides, such two-electrode system as proof of concept study was also evaluated using human urine as urea source for highly efficient H-2 generation with a rate of 0.35 mu M min (1) at an applied potential of 1.48 V, delivering a current density of 10 mA cm (2). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 33 条
[1]   Urea electrolysis: direct hydrogen production from urine [J].
Boggs, Bryan K. ;
King, Rebecca L. ;
Botte, Gerardine G. .
CHEMICAL COMMUNICATIONS, 2009, (32) :4859-4861
[2]  
BOUCHARD DC, 1992, J AM WATER WORKS ASS, V84, P85
[3]  
Chen S., 2016, Angewandte Chemie, V128, P3868, DOI 10.1002/ange.201600387
[4]   Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation [J].
Ding, Rui ;
Qi, Li ;
Jia, Mingjun ;
Wang, Hongyu .
NANOSCALE, 2014, 6 (03) :1369-1376
[5]   Co(OH)2@PANI Hybrid Nanosheets with 3D Networks as High-Performance Electrocatalysts for Hydrogen Evolution Reaction [J].
Feng, Jin-Xian ;
Ding, Liang-Xin ;
Ye, Sheng-Hua ;
He, Xu-Jun ;
Xu, Han ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
ADVANCED MATERIALS, 2015, 27 (44) :7051-+
[6]   Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution [J].
Feng, Ligang ;
Vrubel, Heron ;
Bensimon, Michael ;
Hu, Xile .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (13) :5917-5921
[7]   A direct urea fuel cell - power from fertiliser and waste [J].
Lan, Rong ;
Tao, Shanwen ;
Irvine, John T. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (04) :438-441
[8]   Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media [J].
Laursen, A. B. ;
Patraju, K. R. ;
Whitaker, M. J. ;
Retuerto, M. ;
Sarkar, T. ;
Yao, N. ;
Ramanujachary, K. V. ;
Greenblatt, M. ;
Dismukes, G. C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) :1027-1034
[9]   Enhanced electrooxidation of urea using NiMoO4•xH2O nanosheet arrays on Ni foam as anode [J].
Liang, Yanhui ;
Liu, Qian ;
Asiri, Abdullah M. ;
Sun, Xuping .
ELECTROCHIMICA ACTA, 2015, 153 :456-460
[10]   Vapor-Phase Hydrothermal Transformation of HTiOF3 Intermediates into {001} Faceted Anatase Single-Crystalline Nanosheets [J].
Liu, Porun ;
Wang, Yun ;
Zhang, Haimin ;
An, Taicheng ;
Yang, Huagui ;
Tang, Zhiyong ;
Cai, Weiping ;
Zhao, Huijun .
SMALL, 2012, 8 (23) :3664-3673