Morphology Transition of Te-Doped InAs Nanowire on InP(111)B Grown Using MOCVD Method

被引:2
作者
Song, Chang-Hun [1 ,2 ]
Kong, Minwoo [2 ,3 ]
Jang, Hyunchul [2 ]
Lee, Sang Tae [2 ]
Park, Hyeong-Ho [2 ]
Kim, Donghyun [2 ]
Song, Keunman [2 ]
Ko, Dae-Hong [1 ]
Shin, Chan-Soo [2 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
[2] Korea Adv Nanoctr KANC, Suwon 16229, South Korea
[3] Seoul Natl Univ SNU, Interuniv Semicond Res Ctr, Dept Elect & Comp Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
MOCVD; InAs; nanowire; vapor-solid method; reverse tapering; ELECTRICAL-PROPERTIES;
D O I
10.3390/cryst12121846
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In this paper, we reported changes in the growth morphology of n+InAs nanowires (NWs) doped with Te which were selectively grown on nano-hole patterned InP(111)B substrates using an MOCVD method. While the vertical growth of InAs NWs in the direction was extremely suppressed, their lateral growth was enhanced when the diethyl-tellurium (DETe) flow rate was increased as they grew. Moreover, the sidewall planes evolved from (11 over bar 0) (90 & DEG; against the (111) plane) to a reverse-tapered morphology, which had a 62 & DEG; slope against the InP (111)B plane, when the Te flow rate and growth time were increased. This indicates that the surfactant effect of adsorbed Te atoms on InAs changes the relative growth rate between (111) and (11 over bar 0) due to the increase in surface free energy in the growth plane.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Modeling Interaction in Nanowire Growth Process Toward Improved Yield [J].
Aghdam, Faranak Fathi ;
Liao, Haitao ;
Huang, Qiang .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2017, 14 (02) :1139-1149
[2]   Te incorporation in GaAs1-xSbx nanowires and p-i-n axial structure [J].
Ahmad, Estiak ;
Kasanaboina, P. K. ;
Karim, M. R. ;
Sharma, M. ;
Reynolds, C. L. ;
Liu, Y. ;
Iyer, S. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (12)
[3]   Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1-x Sb x nanowires [J].
Anyebe, E. A. ;
Rajpalke, M. K. ;
Veal, T. D. ;
Jin, C. J. ;
Wang, Z. M. ;
Zhuang, Q. D. .
NANO RESEARCH, 2015, 8 (04) :1309-1319
[4]   Silicon nanowire tunneling field-effect transistors [J].
Bjoerk, M. T. ;
Knoch, J. ;
Schmid, H. ;
Riel, H. ;
Riess, W. .
APPLIED PHYSICS LETTERS, 2008, 92 (19)
[5]   Suitability of Au- and Self-Assisted GaAs Nanowires for Optoelectronic Applications [J].
Breuer, Steffen ;
Pfueller, Carsten ;
Flissikowski, Timur ;
Brandt, Oliver ;
Grahn, Holger T. ;
Geelhaar, Lutz ;
Riechert, Henning .
NANO LETTERS, 2011, 11 (03) :1276-1279
[6]   Crystal Phases in III-V Nanowires: From Random Toward Engineered Polytypism [J].
Caroff, Philippe ;
Bolinsson, Jessica ;
Johansson, Jonas .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (04) :829-846
[7]   GaAs/AlGaAs Nanowire Photodetector [J].
Dai, Xing ;
Zhang, Sen ;
Wang, Zilong ;
Adamo, Giorgio ;
Liu, Hai ;
Huang, Yizhong ;
Couteau, Christophe ;
Soci, Cesare .
NANO LETTERS, 2014, 14 (05) :2688-2693
[8]   Nanometre-scale electronics with III-V compound semiconductors [J].
del Alamo, Jesus A. .
NATURE, 2011, 479 (7373) :317-323
[9]   In situ doping of catalyst-free InAs nanowires with Si: Growth, polytypism, and local vibrational modes of Si [J].
Dimakis, Emmanouil ;
Ramsteiner, Manfred ;
Huang, Chang-Ning ;
Trampert, Achim ;
Davydok, Anton ;
Biermanns, Andreas ;
Pietsch, Ullrich ;
Riechert, Henning ;
Geelhaar, Lutz .
APPLIED PHYSICS LETTERS, 2013, 103 (14)
[10]   Microstructure characterization of SiC nanowires as reinforcements in composites [J].
Dong, Ronghua ;
Yang, Wenshu ;
Wu, Ping ;
Hussain, Murid ;
Xiu, Ziyang ;
Wu, Gaohui ;
Wang, Pingping .
MATERIALS CHARACTERIZATION, 2015, 103 :37-41