Algebraic independence results for reciprocal sums of Fibonacci numbers

被引:17
|
作者
Elsner, Carsten [1 ]
Shimomura, Shun [2 ]
Shiokawa, Iekata [2 ]
机构
[1] FHDW Hannover, D-30173 Hannover, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
Fibonacci numbers; algebraic independence; Ramanujan q-series; TRANSCENDENCE; SERIES;
D O I
10.4064/aa148-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:205 / 223
页数:19
相关论文
共 50 条
  • [1] Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers
    Stein, Martin
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 101 - 107
  • [2] ALGEBRAIC INDEPENDENCE OF MODIFIED RECIPROCAL SUMS OF PRODUCTS OF FIBONACCI NUMBERS
    Tanaka, Taka-aki
    TSUKUBA JOURNAL OF MATHEMATICS, 2006, 30 (02) : 341 - 357
  • [3] Algebraic independence of sums of reciprocals of the Fibonacci numbers
    Nishioka, K
    Tanaka, A
    Toshimitsu, T
    MATHEMATISCHE NACHRICHTEN, 1999, 202 : 97 - 108
  • [4] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    C. Elsner
    S. Shimomura
    I. Shiokawa
    The Ramanujan Journal, 2008, 17 : 429 - 446
  • [5] Algebraic relations for reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    ACTA ARITHMETICA, 2007, 130 (01) : 37 - 60
  • [6] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    RAMANUJAN JOURNAL, 2008, 17 (03) : 429 - 446
  • [7] Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 17 - +
  • [8] Reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Lekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 77 - +
  • [9] Algebraic independence results for the infinite products generated by Fibonacci numbers
    Luca, Florian
    Tachiya, Yohei
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 165 - 173
  • [10] LINEAR INDEPENDENCE RESULTS FOR SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS
    Duverney, D.
    Suzuki, Y.
    Tachiya, Y.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 375 - 392