Tailored Nanoparticle Codelivery of antimiR-21 and antimiR-10b Augments Glioblastoma Cell Kill by Temozolomide: Toward a "Personalized" Anti-microRNA Therapy

被引:35
作者
Ananta, Jeyarama S.
Paulmurugan, Ramasamy
Massoud, Tara F.
机构
[1] Stanford Univ, Sch Med, Lab Expt & Mol Neuroimaging, MIPS, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, BioX Program, Stanford, CA 94305 USA
关键词
glioblastoma; PLGA nanoparticle; microRNA-21; microRNA-10b; antisense miR-10b; antisense miR-21; anti-microRNA therapy; personalized medicine; IN-VIVO; SYNERGISTIC INHIBITION; PLGA NANOPARTICLES; GLIOMA GROWTH; BREAST-CANCER; INVASION; PROLIFERATION; METASTASIS; EXPRESSION; SURVIVAL;
D O I
10.1021/acs.molpharmaceut.6b00388
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Glioblastoma remains an aggressive brain malignancy with poor prognosis despite advances in multimodal therapy that include standard use of Temozolomide. MicroRNA-21 (miR-21) and microRNA-10b (miR-10b) are oncomiRs overexpressed in glioblastoma, promoting many aspects of cancer biology. We hypothesized that PLGA nanoparticles carrying antisense miR-21 (antimiR-21) and antisense miR-10b (antimiR-10b) might beneficially knockdown endogenous miR-21 and miR-10b function and reprogram cells prior to Temozolomide treatment. PLGA nanoparticles were effective in intracellular delivery of encapsulated oligonucleotides. Concentrations of delivered antimiR-21 and antimiR-10b were optimized and specifically tailored to copy numbers of intracellular endogenous microRNAs. Coinhibition of miR-21 and miR-10b significantly reduced the number of viable cells (by 24%; p < 0.01) and increased (2.9-fold) cell cycle arrest at G2/M phase upon Temozolomide treatment in U87 MG cells. Cell-tailored nanoparticle-assisted concurrent silencing of miR-21 and miR-10b prior to Temozolomide treatment is an effective molecular therapeutic strategy in cell culture, warranting the need for further studies prior to future in vivo "personalized" medicine applications.
引用
收藏
页码:3164 / 3175
页数:12
相关论文
共 46 条
[21]   Oncogenic effects of miR-10b in glioblastoma stem cells [J].
Guessous, Fadila ;
Alvarado-Velez, Melissa ;
Marcinkiewicz, Lukasz ;
Zhang, Ying ;
Kim, Jungeun ;
Heister, Simon ;
Kefas, Benjamin ;
Godlewski, Jakub ;
Schiff, David ;
Purow, Benjamin ;
Abounader, Roger .
JOURNAL OF NEURO-ONCOLOGY, 2013, 112 (02) :153-163
[22]  
Inaba N, 2011, ANTICANCER RES, V31, P1653
[23]  
Karsy Michael, 2012, Genes Cancer, V3, P3, DOI 10.1177/1947601912448068
[24]   PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier [J].
Li, Jingyan ;
Sabliov, Cristina .
NANOTECHNOLOGY REVIEWS, 2013, 2 (03) :241-257
[25]   miR-10 in development and cancer [J].
Lund, A. H. .
CELL DEATH AND DIFFERENTIATION, 2010, 17 (02) :209-214
[26]   Tumour invasion and metastasis initiated by microRNA 10b in breast cancer [J].
Ma, Li ;
Teruya-Feldstein, Julie ;
Weinberg, Robert A. .
NATURE, 2007, 449 (7163) :682-U2
[27]  
Michael MZ, 2003, MOL CANCER RES, V1, P882
[28]   Circulating microRNAs as stable blood-based markers for cancer detection [J].
Mitchell, Patrick S. ;
Parkin, Rachael K. ;
Kroh, Evan M. ;
Fritz, Brian R. ;
Wyman, Stacia K. ;
Pogosova-Agadjanyan, Era L. ;
Peterson, Amelia ;
Noteboom, Jennifer ;
O'Briant, Kathy C. ;
Allen, April ;
Lin, Daniel W. ;
Urban, Nicole ;
Drescher, Charles W. ;
Knudsen, Beatrice S. ;
Stirewalt, Derek L. ;
Gentleman, Robert ;
Vessella, Robert L. ;
Nelson, Peter S. ;
Martin, Daniel B. ;
Tewari, Muneesh .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (30) :10513-10518
[29]   A Systematic Review of MicroRNA in Glioblastoma Multiforme: Micro-modulators in the Mesenchymal Mode of Migration and Invasion [J].
Moller, Heidi G. ;
Rasmussen, Andreas P. ;
Andersen, Hjalte H. ;
Johnsen, Kasper B. ;
Henriksen, Michael ;
Duroux, Meg .
MOLECULAR NEUROBIOLOGY, 2013, 47 (01) :131-144
[30]   Regulation of global and specific mRNA translation by the mTOR signaling pathway [J].
Nandagopal, Neethi ;
Roux, Philippe P. .
TRANSLATION, 2015, 3 (01)