Characterization and Preliminary Biological Evaluation of 3D-Printed Porous Scaffolds for Engineering Bone Tissues

被引:39
作者
Liu, Chen-Guang [1 ]
Zeng, Yu-Ting [1 ]
Kankala, Ranjith Kumar [1 ,2 ]
Zhang, Shan-Shan [1 ]
Chen, Ai-Zheng [1 ,2 ]
Wang, Shi-Bin [1 ,2 ]
机构
[1] Huaqiao Univ, Inst Biomat & Tissue Engn, Xiamen 361021, Peoples R China
[2] Huaqiao Univ, Fujian Prov Key Lab Biochem Technol, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
3D-printing; poly(lactide-co-glycolide); biodegradation; osteoblast growth; tissue engineering; MECHANICAL-PROPERTIES; IN-VITRO; COMPOSITE SCAFFOLD; YOUNGS MODULUS; DEGRADATION; FABRICATION; DEPOSITION; PLGA; CYTOCOMPATIBILITY; MORPHOLOGY;
D O I
10.3390/ma11101832
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Some basic requirements of bone tissue engineering include cells derived from bone tissues, three-dimensional (3D) scaffold materials, and osteogenic factors. In this framework, the critical architecture of the scaffolds plays a crucial role to support and assist the adhesion of the cells, and the subsequent tissue repairs. However, numerous traditional methods suffer from certain drawbacks, such as multi-step preparation, poor reproducibility, high complexity, difficulty in controlling the porous architectures, the shape of the scaffolds, and the existence of solvent residue, which limits their applicability. In this work, we fabricated innovative poly(lactic-co-glycolic acid) (PLGA) porous scaffolds, using 3D-printing technology, to overcome the shortcomings of traditional approaches. In addition, the printing parameters were critically optimized for obtaining scaffolds with normal morphology, appropriate porous architectures, and sufficient mechanical properties, for the accommodation of the bone cells. Various evaluation studies, including the exploration of mechanical properties (compressive strength and yield stress) for different thicknesses, and change of structure (printing angle) and porosity, were performed. Particularly, the degradation rate of the 3D scaffolds, printed in the optimized conditions, in the presence of hydrolytic, as well as enzymatic conditions were investigated. Their assessments were evaluated using the thermal gravimetric analyzer (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). These porous scaffolds, with their biocompatibility, biodegradation ability, and mechanical properties, have enabled the embryonic osteoblast precursor cells (MC3T3-E1), to adhere and proliferate in the porous architectures, with increasing time. The generation of highly porous 3D scaffolds, based on 3D printing technology, and their critical evaluation, through various investigations, may undoubtedly provide a reference for further investigations and guide critical optimization of scaffold fabrication, for tissue regeneration.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Designing osteogenic interfaces on 3D-Printed thermoplastic bone scaffolds
    Negi, Ankita
    Goswami, Kajal
    Diwan, Himanshi
    Agrawal, Garima
    Murab, Sumit
    MATERIALS TODAY CHEMISTRY, 2025, 45
  • [22] Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Scaffolds for Critical Size Bone Defect Repair
    Zhao, Shuang
    Xie, Kai
    Guo, Yu
    Tan, Jia
    Wu, Junxiang
    Yang, Yangzi
    Fu, Penghuai
    Wang, Lei
    Jiang, Wenbo
    Hao, Yongqiang
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (09) : 5120 - 5131
  • [23] 3D-printed biodegradable composite poly(lactic acid)-based scaffolds with a shape memory effect for bone tissue engineering
    bin Firoz, Abdullah
    Rybakov, Vladimir
    Fetisova, Anastasia A.
    Shlapakova, Lada E.
    Pariy, Igor O.
    Toropkov, Nikita
    Lozhkomoev, Alexander S.
    Mukhortova, Yulia R.
    Sharonova, Anna A.
    Wagner, Dmitry V.
    Surmeneva, Maria A.
    Kholkin, Andrei L.
    Surmenev, Roman A.
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (01)
  • [24] Biomimetic structural design in 3D-printed scaffolds for bone tissue engineering
    Huang, Dan
    Li, Zuhao
    Li, Guangfeng
    Zhou, Fengjin
    Wang, Guangchao
    Ren, Xiaoxiang
    Su, Jiacan
    MATERIALS TODAY BIO, 2025, 32
  • [25] Production of 3D-Printed Tympanic Membrane Scaffolds as a Tissue Engineering Application
    Ilhan, Elif
    Ulag, Songul
    Sahin, Ali
    Ekren, Nazmi
    Kilic, Osman
    Oktar, Faik Nuzhet
    Gunduz, Oguzhan
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2020), 2020, 12108 : 175 - 184
  • [26] Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering
    Park, JiSun
    Lee, Sang Jin
    Jo, Ha Hyeon
    Lee, Jun Hee
    Kim, Wan Doo
    Lee, Jae Young
    Park, Su A.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 46 : 175 - 181
  • [27] Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review
    Kumar, Pawan
    Shamim
    Muztaba, Mohammad
    Ali, Tarmeen
    Bala, Jyoti
    Sidhu, Haramritpal Singh
    Bhatia, Amit
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (05) : 1184 - 1194
  • [28] Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds
    Xu, Yuanhang
    Zhang, Feiyang
    Zhai, Weijie
    Cheng, Shujie
    Li, Jinghua
    Wang, Yi
    POLYMERS, 2022, 14 (03)
  • [29] Computational and experimental characterization of 3D-printed PCL structures toward the design of soft biological tissue scaffolds
    Liu, Hailong
    Ahlinder, Astrid
    Yassin, Mohammed A.
    Finne-Wistrand, Anna
    Gasser, T. Christian
    MATERIALS & DESIGN, 2020, 188
  • [30] Bioactive materials-coated polybutylene-adipate-co-terephthalate 3D-printed scaffolds for application in the bone tissues engineering
    Menezes, Felipe Castro
    Scheibel, Joice Maria
    Balbinot, Gabriela de Souza
    Miranda, Gabriela Messias
    Leitune, Vicente Castelo Branco
    Collares, Fabricio Mezzomo
    Soares, Rosane Michele Duarte
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (04)