Characterization and Preliminary Biological Evaluation of 3D-Printed Porous Scaffolds for Engineering Bone Tissues

被引:39
|
作者
Liu, Chen-Guang [1 ]
Zeng, Yu-Ting [1 ]
Kankala, Ranjith Kumar [1 ,2 ]
Zhang, Shan-Shan [1 ]
Chen, Ai-Zheng [1 ,2 ]
Wang, Shi-Bin [1 ,2 ]
机构
[1] Huaqiao Univ, Inst Biomat & Tissue Engn, Xiamen 361021, Peoples R China
[2] Huaqiao Univ, Fujian Prov Key Lab Biochem Technol, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
3D-printing; poly(lactide-co-glycolide); biodegradation; osteoblast growth; tissue engineering; MECHANICAL-PROPERTIES; IN-VITRO; COMPOSITE SCAFFOLD; YOUNGS MODULUS; DEGRADATION; FABRICATION; DEPOSITION; PLGA; CYTOCOMPATIBILITY; MORPHOLOGY;
D O I
10.3390/ma11101832
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Some basic requirements of bone tissue engineering include cells derived from bone tissues, three-dimensional (3D) scaffold materials, and osteogenic factors. In this framework, the critical architecture of the scaffolds plays a crucial role to support and assist the adhesion of the cells, and the subsequent tissue repairs. However, numerous traditional methods suffer from certain drawbacks, such as multi-step preparation, poor reproducibility, high complexity, difficulty in controlling the porous architectures, the shape of the scaffolds, and the existence of solvent residue, which limits their applicability. In this work, we fabricated innovative poly(lactic-co-glycolic acid) (PLGA) porous scaffolds, using 3D-printing technology, to overcome the shortcomings of traditional approaches. In addition, the printing parameters were critically optimized for obtaining scaffolds with normal morphology, appropriate porous architectures, and sufficient mechanical properties, for the accommodation of the bone cells. Various evaluation studies, including the exploration of mechanical properties (compressive strength and yield stress) for different thicknesses, and change of structure (printing angle) and porosity, were performed. Particularly, the degradation rate of the 3D scaffolds, printed in the optimized conditions, in the presence of hydrolytic, as well as enzymatic conditions were investigated. Their assessments were evaluated using the thermal gravimetric analyzer (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). These porous scaffolds, with their biocompatibility, biodegradation ability, and mechanical properties, have enabled the embryonic osteoblast precursor cells (MC3T3-E1), to adhere and proliferate in the porous architectures, with increasing time. The generation of highly porous 3D scaffolds, based on 3D printing technology, and their critical evaluation, through various investigations, may undoubtedly provide a reference for further investigations and guide critical optimization of scaffold fabrication, for tissue regeneration.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Hierarchically porous 3D-printed ceramic scaffolds for bone tissue engineering
    Chan, Shareen S. L.
    Black, Jay R.
    Franks, George, V
    Heath, Daniel E.
    BIOMATERIALS ADVANCES, 2025, 169
  • [2] Biological evaluation of 3D-Printed chitosan-based scaffolds for tissue engineering
    Behrooznia, Zahra
    Nourmohammadi, Jhamak
    Mohammadi, Zahra
    Shabani, Fatemeh
    Mashhadi, Rahele
    CARBOHYDRATE RESEARCH, 2025, 551
  • [3] 3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration
    Qi, Jin
    Wang, Yili
    Chen, Liping
    Chen, Linjie
    Wen, Feng
    Huang, Lijiang
    Rueben, Pfukwa
    Zhang, Chunwu
    Li, Huaqiong
    REGENERATIVE BIOMATERIALS, 2023, 10
  • [4] Chitosan-based 3D-printed scaffolds for bone tissue engineering
    Yadav, L. Roshini
    Chandran, S. Viji
    Lavanya, K.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 183 : 1925 - 1938
  • [5] Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications
    Rasoulianboroujeni, M.
    Fahimipour, F.
    Shah, P.
    Khoshroo, K.
    Tahriri, M.
    Eslami, H.
    Yadegari, A.
    Dashtimoghadam, E.
    Tayebi, L.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 96 : 105 - 113
  • [6] 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering
    Carrow, James K.
    Di Luca, Andrea
    Dolatshahi-Pirouz, Alireza
    Moroni, Lorenzo
    Gaharwar, Akhilesh K.
    REGENERATIVE BIOMATERIALS, 2019, 6 (01) : 29 - 37
  • [7] Biological study of polyethyleneimine functionalized polycaprolactone 3D-printed scaffolds for bone tissue engineering
    Khoshnood, Negin
    Shahrezayee, Mohammad Hossein
    Shahrezayee, Mostafa
    Shams, Alireza
    Zamanian, Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (29)
  • [8] 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications
    Yu, Haiyu
    Xu, Minghao
    Duan, Qida
    Li, Yada
    Liu, Yuchen
    Song, Liqun
    Cheng, Liangliang
    Ying, Jiawei
    Zhao, Dewei
    BIOMEDICAL MATERIALS, 2024, 19 (04)
  • [9] Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering
    Sun, Fengbo
    Sun, Xiaodan
    Wang, Hetong
    Li, Chunxu
    Zhao, Yu
    Tian, Jingjing
    Lin, Yuanhua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
  • [10] 3D-Printed Polyurethane Scaffolds for Bone Tissue Engineering: Techniques and Emerging Applications
    Shanno, Kumari
    Mangala, Preeti
    Shanmugarajan, Thukani Sathanantham
    Bhyan, Bhupinder
    Shinde, Manoj Gangadhar
    Rane, Bhuvaneshwari Yogesh
    Ali, Syed Salman
    Kumar, Mohit
    Kumar, Pawan
    REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE, 2025,