Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis

被引:109
作者
Cheng, Jun [1 ]
Zhang, Jie [2 ,3 ]
Han, Yatong [4 ]
Wang, Xusheng [2 ]
Ye, Xiufen [4 ]
Meng, Yuebo [5 ]
Parwani, Anil [6 ]
Han, Zhi [2 ,3 ,6 ]
Feng, Qianjin [1 ]
Huang, Kun [2 ,3 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangdong Prov Key Lab Med Image Proc, Guangzhou, Guangdong, Peoples R China
[2] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[3] Indiana Univ Sch Med, Dept Med, Indianapolis, IN 46202 USA
[4] Harbin Engn Univ, Coll Automat, Harbin, Heilongjiang, Peoples R China
[5] Xian Univ Architecture & Technol, Coll Informat & Control Engn, Xian, Shaanxi, Peoples R China
[6] Ohio State Univ, Dept Pathol, Columbus, OH 43210 USA
关键词
TUMOR-STROMA RATIO; SURVIVAL; SEGMENTATION; MUTATIONS; IMPACT; MODEL; BAP1;
D O I
10.1158/0008-5472.CAN-17-0313
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. (C) 2017 AACR.
引用
收藏
页码:E91 / E100
页数:10
相关论文
共 50 条
[1]  
American Cancer Society, 2016, CANC FACTS FIG 2016
[2]  
[Anonymous], 2016, Mathematical Problems in Engineering, DOI [10.1208/s12249-016-0486-2, DOI 10.1155/2016/6408741, DOI 10.1155/2016/9084370]
[3]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[4]   New breast cancer prognostic factors identified by computer-aided image analysis of HE stained histopathology images [J].
Chen, Jia-Mei ;
Qu, Ai-Ping ;
Wang, Lin-Wei ;
Yuan, Jing-Ping ;
Yang, Fang ;
Xiang, Qing-Ming ;
Maskey, Ninu ;
Yang, Gui-Fang ;
Liu, Juan ;
Li, Yan .
SCIENTIFIC REPORTS, 2015, 5
[5]   ToppGene Suite for gene list enrichment analysis and candidate gene prioritization [J].
Chen, Jing ;
Bardes, Eric E. ;
Aronow, Bruce J. ;
Jegga, Anil G. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W305-W311
[6]   NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures [J].
Colen, Rivka ;
Foster, Ian ;
Gatenby, Robert ;
Giger, Mary Ellen ;
Gillies, Robert ;
Gutman, David ;
Heller, Matthew ;
Jain, Rajan ;
Madabhushi, Anant ;
Madhavan, Subha ;
Napel, Sandy ;
Rao, Arvind ;
Saltz, Joel ;
Tatum, James ;
Verhaak, Roeland ;
Whitman, Gary .
TRANSLATIONAL ONCOLOGY, 2014, 7 (05) :556-569
[7]   Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images [J].
Cooper, Lee A. D. ;
Kong, Jun ;
Gutman, David A. ;
Dunn, William D. ;
Nalisnik, Michael ;
Brat, Daniel J. .
LABORATORY INVESTIGATION, 2015, 95 (04) :366-376
[8]   Comprehensivemolecular characterization of clear cell renal cell carcinoma [J].
Creighton, Chad J. ;
Morgan, Margaret ;
Gunaratne, Preethi H. ;
Wheeler, David A. ;
Gibbs, Richard A. ;
Robertson, A. Gordon ;
Chu, Andy ;
Beroukhim, Rameen ;
Cibulskis, Kristian ;
Signoretti, Sabina ;
Vandin, Fabio ;
Wu, Hsin-Ta ;
Raphael, Benjamin J. ;
Verhaak, Roel G. W. ;
Tamboli, Pheroze ;
Torres-Garcia, Wandaliz ;
Akbani, Rehan ;
Weinstein, John N. ;
Reuter, Victor ;
Hsieh, James J. ;
Brannon, A. Rose ;
Hakimi, A. Ari ;
Jacobsen, Anders ;
Ciriello, Giovanni ;
Reva, Boris ;
Ricketts, Christopher J. ;
Linehan, W. Marston ;
Stuart, Joshua M. ;
Rathmell, W. Kimryn ;
Shen, Hui ;
Laird, Peter W. ;
Muzny, Donna ;
Davis, Caleb ;
Morgan, Margaret ;
Xi, Liu ;
Chang, Kyle ;
Kakkar, Nipun ;
Trevino, Lisa R. ;
Benton, Susan ;
Reid, Jeffrey G. ;
Morton, Donna ;
Doddapaneni, Harsha ;
Han, Yi ;
Lewis, Lora ;
Dinh, Huyen ;
Kovar, Christie ;
Zhu, Yiming ;
Santibanez, Jireh ;
Wang, Min ;
Hale, Walker .
NATURE, 2013, 499 (7456) :43-+
[9]   Prognostic significance of the tumor-stroma ratio: validation study in node-negative premenopausal breast cancer patients from the EORTC perioperative chemotherapy (POP) trial (10854) [J].
Dekker, T. J. A. ;
van de Velde, C. J. H. ;
van Pelt, G. W. ;
Kroep, J. R. ;
Julien, J-P. ;
Smit, V. T. H. B. M. ;
Tollenaar, R. A. E. M. ;
Mesker, W. E. .
BREAST CANCER RESEARCH AND TREATMENT, 2013, 139 (02) :371-379
[10]   GRAPHIE: graph based histology image explorer [J].
Ding, Hao ;
Wang, Chao ;
Huang, Kun ;
Machiraju, Raghu .
BMC BIOINFORMATICS, 2015, 16