High-Resolution 3D Printing Fabrication of a Microfluidic Platform for Blood Plasma Separation

被引:11
作者
Garcia-Rey, Sandra [1 ,2 ]
Nielsen, Jacob B. [3 ]
Nordin, Gregory P. [4 ]
Woolley, Adam T. [3 ]
Basabe-Desmonts, Lourdes [2 ,5 ,6 ,7 ]
Benito-Lopez, Fernando [1 ,5 ,6 ]
机构
[1] Univ Basque Country, Microfluid Cluster, Analyt Microsyst & Mat Lab Chip AMMa LOAC Grp, Analyt Chem Dept,UPV EHU, Leioa 48940, Spain
[2] Univ Basque Country, Microfluid Cluster, BIOMICs Microfluid Grp, Lascaray Res Ctr,UPV EHU, Vitoria 01006, Spain
[3] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
[4] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
[5] Univ Basque Country, Microfluid Cluster, Bioaraba Hlth Res Inst, Vitoria 01009, Spain
[6] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[7] Basque Fdn Sci, Ikerbasque, Calle Maria Diaz de Haro 3, Bilbao 48013, Spain
基金
美国国家卫生研究院;
关键词
3D printing; stereolithography; high resolution; fabrication; whole blood; plasma separation;
D O I
10.3390/polym14132537
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Additive manufacturing technology is an emerging method for rapid prototyping, which enables the creation of complex geometries by one-step fabrication processes through a layer-by-layer approach. The simplified fabrication achieved with this methodology opens the way towards a more efficient industrial production, with applications in a great number of fields such as biomedical devices. In biomedicine, blood is the gold-standard biofluid for clinical analysis. However, blood cells generate analytical interferences in many test procedures; hence, it is important to separate plasma from blood cells before analytical testing of blood samples. In this research, a custom-made resin formulation combined with a high-resolution 3D printing methodology were used to achieve a methodology for the fast prototype optimization of an operative plasma separation modular device. Through an iterative process, 17 different prototypes were designed and fabricated with printing times ranging from 5 to 12 min. The final device was evaluated through colorimetric analysis, validating this fabrication approach for the qualitative assessment of plasma separation from whole blood. The 3D printing method used here demonstrates the great contribution that this microfluidic technology will bring to the plasma separation biomedical devices market.
引用
收藏
页数:13
相关论文
共 30 条
  • [1] Current and future trends of additive manufacturing for chemistry applications: a review
    Alimi, Oyekunle Azeez
    Meijboom, Reinout
    [J]. JOURNAL OF MATERIALS SCIENCE, 2021, 56 (30) : 16824 - 16850
  • [2] Immunoaffinity monoliths for multiplexed extraction of preterm birth biomarkers from human blood serum in 3D printed microfluidic devices
    Almughamsi, Haifa M.
    Howell, Makella K.
    Parry, Samuel R.
    Esene, Joule E.
    Nielsen, Jacob B.
    Nordin, Gregory P.
    Woolley, Adam T.
    [J]. ANALYST, 2022, 147 (04) : 734 - 743
  • [3] 3D-Printed Microfluidics
    Au, Anthony K.
    Huynh, Wilson
    Horowitz, Lisa F.
    Folch, Albert
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) : 3862 - 3881
  • [4] 3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers
    Beauchamp, Michael J.
    Nielsen, Anna V.
    Gong, Hua
    Nordin, Gregory P.
    Woolley, Adam T.
    [J]. ANALYTICAL CHEMISTRY, 2019, 91 (11) : 7418 - 7425
  • [5] 3D Printed Microfluidic Features Using Dose Control in X, Y, and Z Dimensions
    Beauchamp, Michael J.
    Gong, Hua
    Woolley, Adam T.
    Nordin, Gregory P.
    [J]. MICROMACHINES, 2018, 9 (07):
  • [6] 3D Printed Microfluidic Devices for Solid-Phase Extraction and On-Chip Fluorescent Labeling of Preterm Birth Risk Biomarkers
    Bickham, Anna, V
    Pang, Chao
    George, Benjamin Q.
    Topham, David J.
    Nielsen, Jacob B.
    Nordin, Gregory P.
    Woolley, Adam T.
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (18) : 12322 - 12329
  • [7] Fully 3D printed fluidic devices with integrated valves and pumps for flow injection analysis
    Castiaux, Andre D.
    Selemani, Major A.
    Ward, Morgan A.
    Martin, R. Scott
    [J]. ANALYTICAL METHODS, 2021, 13 (42) : 5017 - 5024
  • [8] 3D-printed microfluidic devices: fabrication, advantages and limitations-a mini review
    Chen, Chengpeng
    Mehl, Benjamin T.
    Munshi, Akash S.
    Townsend, Alexandra D.
    Spence, Dana M.
    Martin, R. Scott
    [J]. ANALYTICAL METHODS, 2016, 8 (31) : 6005 - 6012
  • [9] High-resolution 3D printing in seconds
    Darkes-Burkey, Cameron
    Shepherd, Robert F.
    [J]. NATURE, 2020, 588 (7839) : 594 - 595
  • [10] Dimov IK, 2011, LAB CHIP, V11, P845, DOI 10.1039/c01c00403k