CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973

被引:168
作者
Wendt, Kristen E. [1 ]
Ungerer, Justin [1 ]
Cobb, Ryan E. [2 ]
Zhao, Huimin [2 ]
Pakrasi, Himadri B. [1 ]
机构
[1] Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA
[2] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
来源
MICROBIAL CELL FACTORIES | 2016年 / 15卷
基金
美国国家卫生研究院;
关键词
Cyanobacteria; Synechococcus; CRISPR; Cas9; Genome modification; ESCHERICHIA-COLI; CAS SYSTEMS; BACTERIA; ARCHAEA; GENE; RNA; VECTORS; MUTANTS; GENOMES; LIGHT;
D O I
10.1186/s12934-016-0514-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engineering of Synechococcus 2973 by implementing a CRISPR/Cas9 editing system. We targeted the nblA gene because of its important role in biological response to nitrogen deprivation conditions. Results: First, we determined that the Streptococcus pyogenes Cas9 enzyme is toxic in cyanobacteria, and conjugational transfer of stable, replicating constructs containing the cas9 gene resulted in lethality. However, after switching to a vector that permitted transient expression of the cas9 gene, we achieved markerless editing in 100 % of cyanobacterial exconjugants after the first patch. Moreover, we could readily cure the organisms of antibiotic resistance, resulting in a markerless deletion strain. Conclusions: High expression levels of the Cas9 protein in Synechococcus 2973 appear to be toxic and result in cell death. However, introduction of a CRISPR/Cas9 genome editing system on a plasmid backbone that leads to transient cas9 expression allowed for efficient markerless genome editing in a wild type genetic background.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] Applications of cyanobacteria in biotechnology
    Abed, R. M. M.
    Dobretsov, S.
    Sudesh, K.
    [J]. JOURNAL OF APPLIED MICROBIOLOGY, 2009, 106 (01) : 1 - 12
  • [2] Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant
    Adir, N
    [J]. PHOTOSYNTHESIS RESEARCH, 2005, 85 (01) : 15 - 32
  • [3] CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation
    Bhaya, Devaki
    Davison, Michelle
    Barrangou, Rodolphe
    [J]. ANNUAL REVIEW OF GENETICS, VOL 45, 2011, 45 : 273 - 297
  • [4] Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria
    Cai, Fei
    Axen, Seth D.
    Kerfeld, Cheryl A.
    [J]. RNA BIOLOGY, 2013, 10 (05) : 687 - 693
  • [5] High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System
    Cobb, Ryan E.
    Wang, Yajie
    Zhao, Huimin
    [J]. ACS SYNTHETIC BIOLOGY, 2015, 4 (06): : 723 - 728
  • [6] A SMALL POLYPEPTIDE TRIGGERS COMPLETE DEGRADATION OF LIGHT-HARVESTING PHYCOBILIPROTEINS IN NUTRIENT-DEPRIVED CYANOBACTERIA
    COLLIER, JL
    GROSSMAN, AR
    [J]. EMBO JOURNAL, 1994, 13 (05) : 1039 - 1047
  • [7] Multiplex Genome Engineering Using CRISPR/Cas Systems
    Cong, Le
    Ran, F. Ann
    Cox, David
    Lin, Shuailiang
    Barretto, Robert
    Habib, Naomi
    Hsu, Patrick D.
    Wu, Xuebing
    Jiang, Wenyan
    Marraffini, Luciano A.
    Zhang, Feng
    [J]. SCIENCE, 2013, 339 (6121) : 819 - 823
  • [8] CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    Deltcheva, Elitza
    Chylinski, Krzysztof
    Sharma, Cynthia M.
    Gonzales, Karine
    Chao, Yanjie
    Pirzada, Zaid A.
    Eckert, Maria R.
    Vogel, Joerg
    Charpentier, Emmanuelle
    [J]. NATURE, 2011, 471 (7340) : 602 - +
  • [9] Deng MD, 1999, APPL ENVIRON MICROB, V65, P523
  • [10] Exploring the photosynthetic production capacity of sucrose by cyanobacteria
    Du, Wei
    Liang, Feiyan
    Duan, Yangkai
    Tan, Xiaoming
    Lu, Xuefeng
    [J]. METABOLIC ENGINEERING, 2013, 19 : 17 - 25