Weak core inverses and pseudo core inverses in a ring with involution

被引:10
作者
Zhou, Yukun [1 ]
Chen, Jianlong [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Weak core inverse; weak group inverse; pseudo core inverse; m-weak group inverse; {1,3}-inverse; MOORE-PENROSE;
D O I
10.1080/03081087.2021.1971151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2020, Ferreyra et al. defined the weak core inverse of a complex matrix. We generalize it to a unitary ring with involution and investigate the relationship between the weak core inverse and the m-weak group inverse. Furthermore, we prove that an element is pseudo core invertible if this element is both {1, 3}-invertible and weak group invertible. Then, we show that each nilpotent element is Moore-Penrose invertible if and only if each pseudo core invertible element is weak core invertible. Finally, we consider the conditions under which the weak core inverse of an element coincides with another generalized inverse.
引用
收藏
页码:6876 / 6890
页数:15
相关论文
共 23 条
[1]   Core inverse of matrices [J].
Baksalary, Oskar Maria ;
Trenkler, Goetz .
LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06) :681-697
[2]  
Ben-Israel A., 2003, GEN INVERSES THEORY, V15, DOI DOI 10.1007/B97366
[3]  
Drazin M.P., 1958, AM MATH MONTHLY, V65, P506, DOI DOI 10.2307/2308576.416
[4]   The weak core inverse [J].
Ferreyra, D. E. ;
Levis, F. E. ;
Priori, A. N. ;
Thome, N. .
AEQUATIONES MATHEMATICAE, 2021, 95 (02) :351-373
[5]   Characterizations of k-commutative equalities for some outer generalized inverses [J].
Ferreyra, D. E. ;
Levis, F. E. ;
Thome, N. .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (01) :177-192
[6]   Revisiting the core EP inverse and its extension to rectangular matrices [J].
Ferreyra, D. E. ;
Levis, F. E. ;
Thome, N. .
QUAESTIONES MATHEMATICAE, 2018, 41 (02) :265-281
[7]   *-DMP Elements in *-Semigroups and *-Rings [J].
Gao, Yuefeng ;
Chen, Jianlong ;
Ke, Yuanyuan .
FILOMAT, 2018, 32 (09) :3073-3085
[8]   Pseudo core inverses in rings with involution [J].
Gao, Yuefeng ;
Chen, Jianlong .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) :38-50
[9]   BLOCK GENERALIZED INVERSES [J].
HARTWIG, RE .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1976, 61 (03) :197-251
[10]   Right-left symmetry of aR⊕bR=(a+b)R in regular rings [J].
Jain, SK ;
Prasad, KM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 133 (1-2) :141-142