Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex

被引:74
作者
Van der Gucht, Estel
Hof, Patrick R.
Van Brussel, Leen
Burnat, Kalina
Arckens, Lutgarde
机构
[1] Katholieke Univ Leuven, Lab Neuroplast & Neuroprotcom, B-3000 Louvain, Belgium
[2] Mt Sinai Sch Med, Dept Neurosci, New York, NY 10029 USA
[3] M Nencki Inst Expt Biol, Lab Neuroplast, PL-02093 Warsaw, Poland
关键词
cortical organization; cytoarchitecture; immediate early genes; SMI-32; visual cortex; visual deprivation;
D O I
10.1093/cercor/bhm012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This study was designed to assess the chemoarchitectural organization and extent of the mouse visual cortex. We used nonphosphorylated neurofilament protein, a neuronal marker that exhibits region-specific cellular and laminar patterns, to delineate cortical subdivisions. A comprehensive analysis demonstrated that pyramidal and nonpyramidal neurons expressing neurofilament proteins display striking laminar and regional patterns in the mouse visual cortex permitting the delineation of the primary visual cortex (V1) and its monocular and binocular zones, 2 lateral, and 5 medial extrastriate cortical areas with clear anatomical boundaries and providing evidence that the mouse medial extrastriate cortex is not homogeneous. We also investigated the expression profiles of 2 neuronal activity markers, the immediate early genes c-fos and zif-268, following deprivation paradigms to ascertain the visual nature of all subdivisions caudal, medial, and lateral to V1. The present data indicate that neurochemically identifiable subdivisions of the mouse visual cortex exist laterally and medially to V1 and reveal specific anatomical and functional characteristics at the cellular and regional levels.
引用
收藏
页码:2805 / 2819
页数:15
相关论文
共 88 条
[1]  
[Anonymous], 1999, Chemoarchitectonic atlas of the rat forebrain
[2]   Differential display implicates cyclophilin A in adult cortical plasticity [J].
Arckens, L ;
Van der Gucht, E ;
Van den Bergh, G ;
Massie, A ;
Leysen, I ;
Vandenbussche, E ;
Eysel, UT ;
Huybrechts, R ;
Vandesande, F .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2003, 18 (01) :61-75
[3]  
Arckens L, 2000, J COMP NEUROL, V425, P531, DOI 10.1002/1096-9861(20001002)425:4<531::AID-CNE5>3.0.CO
[4]  
2-J
[5]   SMI-32 parcellates the visual cortical areas of the marmoset [J].
Baldauf, ZB .
NEUROSCIENCE LETTERS, 2005, 383 (1-2) :109-114
[6]  
Beck PD, 1999, J COMP NEUROL, V406, P487
[7]   Dendritic size of pyramidal neurons differs among mouse cortical regions [J].
Benavides-Piccione, Ruth ;
Hamzei-Sichani, Farid ;
Ballesteros-Yanez, Inmaculada ;
DeFelipe, Javier ;
Yuste, Rafael .
CEREBRAL CORTEX, 2006, 16 (07) :990-1001
[8]   Regional analysis of neurofilament protein immunoreactivity in the hamster's cortex [J].
Boire, D ;
Desgent, S ;
Matteau, I ;
Ptito, M .
JOURNAL OF CHEMICAL NEUROANATOMY, 2005, 29 (03) :193-208
[9]   Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: Early maturation of the middle temporal area (MT) [J].
Bourne, JA ;
Rosa, MGP .
CEREBRAL CORTEX, 2006, 16 (03) :405-414
[10]   Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry [J].
Bourne, JA ;
Warner, CE ;
Rosa, MGP .
CEREBRAL CORTEX, 2005, 15 (06) :740-748